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At finite Reynolds numbers, Re, particles migrate across laminar flow streamlines
to their equilibrium positions in microchannels. This migration is attributed to a
lift force, and the balance between this lift and gravity determines the location of
particles in channels. Here we demonstrate that velocity of finite-size particles located
near a channel wall differs significantly from that of an undisturbed flow, and that
their equilibrium position depends on this, referred to as slip velocity, difference. We
then present theoretical arguments, which allow us to generalize expressions for a lift
force, originally suggested for some limiting cases and Re� 1, to finite-size particles
in a channel flow at Re 6 20. Our theoretical model, validated by lattice Boltzmann
simulations, provides considerable insight into inertial migration of finite-size particles
in a microchannel and suggests some novel microfluidic approaches to separate them
by size or density at a moderate Re.

Key words: microfluidics, particle/fluid flow, suspensions

1. Introduction
Microfluidic systems have been shown to be very useful for continuous manipulation

and separation of microparticles with increased control and sensitivity, which is
important for a wide range of applications in chemistry, biology and medicine.
Traditional microfluidic techniques of particle manipulation rely on low Reynolds
number laminar flow. Under these conditions, when no external forces are applied,
particles follow fluid streamlines. Contrary to this, particles migrate across streamlines

† Email addresses for correspondence: aes50@yandex.ru, oivinograd@yahoo.com
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614 E. S. Asmolov and others

to some stationary positions in microchannels when inertial aspects of the flow
become significant. This migration is attributed to inertial lift forces, which are
currently successfully used in microfluidic systems to focus and separate particles of
different sizes continuously, at high flow rate, and without external forces (Di Carlo
et al. 2007; Bhagat, Kuntaegowdanahalli & Papautsky 2008). The rapid development
of inertial microfluidics has raised a considerable interest in the lift forces on
particles in confined flows. We mention below what we believe are the most relevant
contributions.

Inertial lift forces on neutrally buoyant particles have been originally reported for
macroscopic channels (Segré & Silberberg 1962). This pioneering work has concluded
that particles focus to a narrow annulus at radial position 0.6 of a pipe radius, and
argued that lift forces vanish at this equilibrium position. However, no particle
manipulation systems have been explored based on macroscale systems. Much later
this inertial focusing has provided the basis for various methods of particle separation
by size or shape in microfluidics devices (see Martel & Toner (2014) and Zhang
et al. (2016) for recent reviews). In these microfluidic applications the inertial lift
has been balanced by the Dean force due to a secondary rotational flow caused
by inertia of the fluid itself, which can be generated in curved channels (Bhagat
et al. 2008). These Dean drag forces alter the equilibrium positions of the particles.
The preferred location of particles in microchannels could also be controlled by the
balance between inertial lift and external forces, such as electric (Zhang et al. 2014)
or magnetic (Dutz, Hayden & Häfeli 2017).

In recent years extensive efforts have gone into experimentally investigating particle
equilibrium positions in cylindrical (Matas, Morris & Guazzelli 2004; Morita, Itano
& Sugihara-Seki 2017) and rectangular channels (Choi, Seo & Lee 2011; Miura,
Itano & Sugihara-Seki 2014; Hood et al. 2016). Matas et al. (2004) have shown
that the Segré–Silberberg annulus for neutrally buoyant particles shifts toward the
wall as Reynolds number, Re, increases and toward the pipe centre as particle size
increases. At large Re > 600, some particles accumulate in an inner annulus near
the pipe centre. Morita et al. (2017) have found that the inner annulus is not a
true equilibrium position, but a transient zone, and that in a long enough pipe all
particles accumulate within the Segré–Silberberg annulus. It has also been found that
equilibrium positions of slightly non-neutrally buoyant particles in a horizontal pipe
are shifted toward the pipe bottom (Matas et al. 2004).

During last several years numerical calculations (Di Carlo et al. 2009; Liu et al.
2015; Loisel et al. 2015) and computer simulations (Chun & Ladd 2006; Kilimnik,
Mao & Alexeev 2011) have also been concerned with phenomena of the inertial
migration. It has been shown that in rectangular channels particles initially migrate
rapidly to manifolds, and then slowly focus within the manifolds to stable equilibrium
positions near wall centres and channel corners (Chun & Ladd 2006; Di Carlo et al.
2009; Hood et al. 2016). There could be two, four or eight equilibrium positions
depending on the particle size, channel aspect ratio and Reynolds number. Overall,
simulations are consistent with experimental results (Choi et al. 2011; Miura et al.
2014; Hood et al. 2016).

There is also a large literature describing attempts to provide a theory of inertial
lift. An asymptotic approach, which can shed light on these phenomena, has been
developed by several authors (Saffman 1965; Ho & Leal 1974; Vasseur & Cox 1976;
Cox & Hsu 1977; Schonberg & Hinch 1989; Asmolov 1999; Matas et al. 2004;
Matas, Morris & Guazzelli 2009). Most papers have considered a plane Poiseuille
flow, except the work by Matas et al. (2009) where a pipe flow has been addressed.
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Inertial focusing of finite-size particles in microchannels 615

The approach can be applied when the particle Reynolds number, Rep= a2G/ν, where
a is the particle radius, G is the characteristic shear rate and ν is the kinematic
viscosity, is small. If so, to the leading order in Rep, the disturbance flow is governed
by the Stokes equations, and a spherical particle experiences a drag and a torque,
but no lift. The Stokeslet disturbance originates from the particle translational motion
relative to the fluid and is proportional to the slip velocity V ′s = V ′ − U′, where
V ′ and U′ are forward velocities of the particle and of the undisturbed flow at the
particle centre. The stresslet is induced by free rotation of the sphere in the shear
flow and is proportional to G. The lift force has then been deduced from the solution
of the next-order equations which accounts a nonlinear coupling between the two
disturbances (Vasseur & Cox 1976):

F′l = ρa2(cl0a2G2
+ cl1aGV ′s + cl2V ′2s ), (1.1)

where ρ is the fluid density. The coefficients cli (i = 0, 1, 2) generally depend on
several dimensionless parameters, such as z/a, H/a, V ′s/U

′

m and on the channel
Reynolds number, Re=U′mH/ν, where z is the distance to the closest wall, H is the
channel thickness and U′m is the maximum velocity of the channel flow. Solutions for
cl have been obtained in some limiting cases only, and no general analytical equations
have yet been proposed for finite-size particles in a channel. Thus, Vasseur & Cox
(1976) have calculated the coefficients cVC

l0 , cVC
l1 , cVC

l2 for point-like particles at small
channel Reynolds numbers, Re� 1, which depend on z/H only and are applicable
when z � a. Cherukat & McLaughlin (1994) have later evaluated the coefficients
cCM

li (z/a) for finite-size particles near a single wall in a linear shear flow assuming
that z∼ a and proposed simple fits for them. However, it remains unclear if and how
earlier theoretical results for point-like particles at Re� 1 or for finite-size particles
near a single wall can be generalized to predict the lift of finite-size particles at any
z and a finite Re of a microfluidic channel.

According to equation (1.1) the contribution of the slip velocity to the lift forces
dominates when V ′s � Ga. Since the slip velocity is induced by external forces,
such as gravity, it is believed that it impacts a hydrodynamic lift only in the case
of non-neutrally buoyant particles. For neutrally buoyant particles with equal to ρ

density, the slip velocity is normally considered to be negligibly small (Ho & Leal
1974; Hood, Lee & Roper 2015). A corollary from that would be that the lift of
neutrally buoyant particles could be due to the stresslet only. Such a conclusion,
however, can be justified theoretically only for small particles far from walls, z� a,
but hydrodynamic interactions at finite distances z∼a can induce a finite slip, V ′s∼Ga,
so that all terms in (1.1) become comparable (Cherukat & McLaughlin 1994). The
variation of the slip velocity of neutrally buoyant particles in a thin near-wall layer
can impact the lift force, but we are unaware of any previous work that has addressed
this question.

The purpose of this introduction has been to show that, in spite of its importance
for inertial microfluidics, the lift forces of finite-size particles in a bounded geometry
of a microchannel still remain poorly understood. In particular, there is still a lack of
simple analytical formulas quantifying the lift, as well as of general solutions valid in
the large range of parameters typical for real microfluidic devices. Given the current
upsurge of interest in the inertial hydrodynamic phenomena and their applications to
separation of particles in microfluidic devices it would seem timely to provide a more
satisfactory theory of a hydrodynamic lift in a microchannel and also to bring some
of modern simulation techniques to bear on this problem. In this paper we present
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616 E. S. Asmolov and others

z

x

a

FIGURE 1. (Colour online) Sketch of a migration of a particle of radius a to an
equilibrium position in a pressure-driven flow. The locus of this position is determined
by the balance between lift, F′l , and gravity, F′g, forces.

some results of a study of a migration of finite-size particles at moderate channel
Reynolds numbers, Re ∼ 10, with the special focus on the role of the slip velocity
in the hydrodynamic lift.

Our paper is arranged as follows. In § 2 we propose a general expression for the
lift force on a neutrally buoyant particle in a microchannel, which reduces to earlier
theoretical results (Vasseur & Cox 1976; Cherukat & McLaughlin 1994) in relevant
limiting cases. We also extend our expression to the case of slightly non-neutrally
buoyant particles with the slip velocity smaller than Ga. To access the validity of
the proposed theory we use a simulation method described in § 3, and the numerical
results are presented in § 4. We conclude in § 5 with a discussion of our results
and their possible relevance for a fractionation of particles in microfluidic devices.
appendices A and B contain a summary of early calculations of lift coefficients and
the derivation of differential equations that determine trajectories of particles.

2. Theory

In this section we propose an analytical expression for the lift force on neutrally
buoyant and slightly non-neutrally buoyant particles of radius a, which translate
parallel to a channel wall. Our expression is valid for a/H � 1 at any distance z
from the channel wall.

We consider a pressure-driven flow in a flat inclined microchannel of thickness H.
An inclination angle α> 0 is defined relative to the horizontal. The coordinate axis x
is parallel to the channel wall, and the normal to the wall coordinate is denoted by z.
The geometry is shown in figure 1. The undisturbed velocity profile in such a channel
is given by

U′(z)= 4U′mz(1− z/H)/H. (2.1)

Let us now introduce a dimensionless slip velocity Vs = V ′s/(aGm), where
Gm = 4U′m/H is the maximum shear rate at the channel wall. We can then rewrite
equation (1.1) as

F′l = ρa4G2
mcl, (2.2)

with the lift coefficient
cl = cl0 + cl1Vs + cl2V2

s , (2.3)
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Inertial focusing of finite-size particles in microchannels 617

which depends on the slip velocity, Vs, which in turn can be determined from the
Stokes equations (a zero-order solution). Therefore, to construct a general expression
for a lift force acting on finite-size particles in a channel it is necessary to estimate
Vs as a function of z.

We begin by studying the classical case of neutrally buoyant (i.e. force- and a
torque-free) particles with a density ρp equal to that of liquid, ρ. The expression for
Vs in a linear shear flow near a single wall has been derived before (Goldman, Cox &
Brenner 1967) and can be used to calculate the slip velocity in the near-wall region
of our channel. The fits for Vs are given in appendix A, equations (A 2)–(A 4). We
first note that depending on z/a one can distinguish between two different regimes
of behaviour of Vs. In the central part of the channel, i.e. when z/a� 1, the slip
contribution to the lift decays as (a/z)3 (Wakiya, Darabaner & Mason 1967), being
always very small, but finite. In contrast, when the gap between the sphere and the
wall is small, z/a − 1� 1, the slip velocity varies very rapidly with z/a (Goldman
et al. 1967):

Vnb
s =−1+

0.7431
0.6376− 0.200 log(z/a− 1)

. (2.4)

As a side note we should like to mention here that a logarithmic singularity in (2.4)
implies that in the near-wall region the lift coefficient, equation (2.3), cannot be fitted
by any power law (a/z)n as has been previously suggested (Di Carlo et al. 2009;
Hood et al. 2015; Liu et al. 2016).

It follows from (2.4) that for an immobile particle in a contact with the wall, z= a,
the slip velocity is largest, Vs=−1. In this limiting case the lift coefficient also takes
its maximum value, cKL

l ' 9.257 (Krishnan & Leighton Jr. 1995). Far from the wall,
the slip velocity is much smaller and can be neglected, so that we can consider cl' cl0.
Therefore, when a� z�H, the value of cl in (2.3) is equal to cCV

l0 |z/H→0= 55π/96'
1.8 (Cox & Hsu 1977), i.e. it becomes much smaller than for a particle at the wall.
This illustrates that cl varies significantly in the vicinity of the wall due to a finite
slip.

We now remark that the Stokeslet contribution (the second and the third terms
in (2.3)) is finite for z∼ a only and vanishes in the central part of the channel. Within
the close proximity to the wall we may neglect the corrections to the slip and the
lift of order a/H due to parabolic flow (Pasol, Sellier & Feuillebois 2006; Yahiaoui
& Feuillebois 2010) and due to the second wall. Therefore, in this region one can
use the results by Cherukat & McLaughlin (1994) for the lift coefficients cCM

li . The
stresslet contribution to the lift (first term in (2.3)) is finite for any z. Close to the
wall, the effect of particle size for this term is negligible as the coefficient cCM

l0 (z/a)
is nearly constant (Cherukat & McLaughlin 1994). So we may describe the stresslet
contribution by the coefficient cVC

l0 obtained by Vasseur & Cox (1976). This enables
us to construct the following formula for the lift coefficient:

cl = cVC
l0 (z/H)+ γ cCM

l1 (z/a)Vs + cCM
l2 (z/a)V

2
s , (2.5)

where γ = G(z)/Gm = 1 − 2z/H 6 1 is a dimensionless local shear rate at the
particle position. The fitting expressions for three lift coefficients are summarized
in appendix A. We, therefore, use (A 6) to calculate cVC

l0 , equation (A 9) to calculate
cCM

l1 and equation (A 10) for cCM
l2 . Note that in the second term of (2.5) we have

introduced a correction factor γ , which takes into account the variation of G in the
second term of (1.1) and ensures the lift remains zero at the channel centreline.
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618 E. S. Asmolov and others

We recall, that equation (2.5) is asymptotically valid for any z when a/H � 1
and Re� 1. However, one can argue that it should be accurate enough at moderate
Reynolds numbers. Indeed, the contribution of undisturbed flow to inertial terms in
the Navier–Stokes equations remains relatively small when Re 6 20. With this reason
constructed for Re � 1 regular-perturbation methods (Ho & Leal 1974; Vasseur &
Cox 1976; Cherukat & McLaughlin 1994) have successfully predicted the lift force
on a point-like neutrally buoyant particle at a moderate Re. For larger Re, when a
contribution of inertial terms becomes significant, the equilibrium positions should be
shifted towards the wall with the increase in Re (Schonberg & Hinch 1989; Asmolov
1999).

We now turn to non-neutrally buoyant particles, for which the density is different
from that of the liquid, so that they experience an external gravity force, F′g, which
in dimensionless form can be expressed as

Fg =
F′g

ρa4G2
m

=
4πg

3aG2
m

1ρ, (2.6)

where 1ρ = (ρp − ρ)/ρ. The gravity influences both the particle migration and
equilibrium position when Fg = O(1). It also induces an additional slip velocity
which is of the order of the Stokes settling velocity,

VSt
=

F′g
6πµa2Gm

=
RepFg

6π
, (2.7)

where µ is the dynamic viscosity. The effect of this velocity on the lift is comparable
to Fnb

l when VSt
=O(1), i.e. at large gravity, Fg∼ 6πRe−1

p � 1, and is very important
for vertical or nearly vertical channels. For horizontal channels, the slip velocity is
equal to that of a neutrally buoyant sphere since Fx = 0. Equation (2.5) can also be
applied in this case since the slip velocity remains small far from walls. Equilibrium
positions of particles, zeq, can then be deduced from the balance between the lift and
the gravity,

cl(zeq)= Fg. (2.8)

Equation (2.8) may have two, one or no stable equilibrium points depending on Fg,
and the sensitivity of the equilibrium positions to the value of a or 1ρ is defined by
the value ∂cl/∂z. Thus, when the derivative is small, small variations in Fg will lead
to a significant shift in focusing positions. We finally note that the range of possible
zeq can be tuned by the choice of U′m.

3. Simulation method
In this section, we present our simulation method and justify the choice of

parameters.
For our computer experiment, we chose a scheme based on the lattice Boltzmann

method (Benzi, Succi & Vergassola 1992; Kunert, Harting & Vinogradova 2010;
Dubov et al. 2014) which has been successfully employed earlier to simulate a
motion of particles in the channel flow. We use a simulation cell confined by two
impermeable no-slip walls located at z = 0 and z = 79δ, so that in all simulations
H = 79δ, and two periodic boundaries with Nx = Ny = 256δ, where δ is the lattice
spacing. Spherical particles of radii a= 4δ − 12δ are implemented as moving no-slip
boundaries (Ladd & Verberg 2001; Janoschek, Toschi & Harting 2010; Harting et al.
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Inertial focusing of finite-size particles in microchannels 619

2014), where the chosen radii are sufficient to keep discretization effects of the order
of a few per cent (Janoschek 2013). A Poiseuille flow is generated by applying a body
force, which is equivalent to a pressure gradient −∇p. We use a three-dimensional,
19 velocity, single relaxation time implementation of the lattice Boltzmann method,
where the relaxation time τ is kept to 1 throughout this paper. Different flow rates
are obtained by changing the fluid forcing. We use two channel Reynolds numbers,
Re = 11.3 and 22.6. To simulate the migration in an inclined channel we apply the
gravity force directed at an angle α relative to the z-axis at the centre of the particle.
In our simulations the values of dimensionless Fg vary from 0 (neutrally buoyant
particle) to 13.91.

In our computer experiments we determine the lift by using two different strategies.
In the first method we extract the lift from the migration velocity. We measure
the x- and z-components of the particle velocity to find the dimensionless slip,
Vs = (V ′x − U′(z))/(aGm), and migration velocities, Vm = V ′z/(aGm). To suppress the
fluctuations arising from the discretization artefacts we average the velocities over
approximately 4000 time steps. The error does not exceed 3 % for the particles with
a = 4 and rapidly decreases with a. The lift force can then be found from these
calculations, by assuming that the particle motion is quasi-stationary. The lift is
balanced by the z-component of the drag, F′l =−F′dz. Following Dubov et al. (2014)
we use an expression

F′dz ≈−6πµaV ′m fz(z/H, a/H), (3.1)

fz = 1+
a

z− a
+

a
H − a− z

, (3.2)

where the second and the third terms are corrections to the Stokes drag due to
hydrodynamic interactions with two channel walls. In what follows

cl = 6πVm fzRe−1
p . (3.3)

The second method to calculate the lift (and to check the validity of the first approach)
uses the balance of the lift and the gravity forces described by (2.8). By varying
the gravity force Fg one can, therefore, comprehend the whole range of equilibrium
positions within the channel to obtain cl(z). The advantage of such an approach
is that it does not require the particle motion to be quasi-stationary. However, the
disadvantage of this method is that the convergence to equilibrium can be slow in
the central zones of the channel, where the slope of cl(z) is small. Therefore, we use
this computational strategy only in the near-wall region.

4. Results and discussion
In this section, we present the lattice Boltzmann simulation results and compare

them with theoretical predictions.

4.1. Neutrally buoyant particles

We start with neutrally buoyant particles and first calculate their migration Vnb
m and the

slip Vnb
s velocities as a function of z/H. Figure 2 plots simulation data obtained for

particles of radius a= 4δ. Here we show only a half of the channel since the curves
are antisymmetric with respect to the channel axis z=H/2. These results demonstrate
that the migration velocity differs significantly from the velocity cl0Rep/(6π), where
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FIGURE 2. (a) Dimensionless migration velocity computed as a function of z/H for
particles of a= 4δ (symbols). The location of the particle in a contact with the wall, z= a,
is shown by a vertical dotted line. Dashed curve plots theoretical predictions for point-like
particles. Solid curve shows a polynomial fit to simulation data. (b) Dimensionless slip
velocities computed for the same particles (symbols). Solid curve plots the slip velocity
in a linear shear flow near a single wall. Dashed line plots the Faxen correction. Vertical
dotted line indicates the location of z= a.

Rep = a2Gm/ν, predicted theoretically for point-like particles (Vasseur & Cox 1976).
We also see that the equilibrium position, Vnb

m = 0, of finite-size particles is shifted
towards the channel axis compared to that of point-like particles, which is obviously
due to their interactions with the wall resulting in a finite slip velocity. Indeed,
figure 2(b) demonstrates that the computed Vnb

s grows rapidly near the wall, being
close to the theoretical predictions for a linear shear flow near a single wall (Goldman
et al. 1967). Unlike theoretical predictions by Goldman et al. (1967), the computed
slip velocity does not vanish in the central part of the channel. Its value is roughly
twice larger than the Faxen correction 4U′ma2/(3H2) (Happel & Brenner 1965).
Note that a similar difference has been obtained in simulations of the migration
of finite-size particles based on the force coupling method (Loisel et al. 2015).
These deviations from the Faxen corrections are likely also caused by hydrodynamic
interactions of particles with the wall in a parabolic flow.

Figure 3 shows cl for particles of a = 4δ and 8δ. The lift coefficient has been
obtained from the migration velocity and from the force balance as specified above,
and simulations have been made for two moderate Reynolds numbers, Re= 11.3 and
22.6. As we discussed above, if Re6 20 a potential dependence of cl on Re could be
ruled out a priori, and this is indeed confirmed by our simulations. Therefore, below
we provide a detailed comparison of our simulation data with asymptotic solutions
obtained for Re � 1, which should be applicable for finite moderate Re. Figure 3
also includes theoretical predictions by Vasseur & Cox (1976) and curves calculated
with (2.5). One can see that simulation results show a strong discrepancy with the
point-particle approximation, especially in the near-wall region, where hydrodynamic
interactions are significant. This discrepancy increases with the size of particles. We
can, however, conclude that predictions of our equation (2.5) are generally in good
agreement with simulation results. Thus, for smaller particles, of a= 4δ, equation (2.5)
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FIGURE 3. Lift coefficient, cl, for neutrally buoyant particles of a= 4δ (circles) and 8δ
(squares) obtained from the migration velocity at Re=11.3 (grey symbols) and 22.6 (white
symbols). Solid and dash-dotted curves show predictions of (2.5) for a=4δ and 8δ, dashed
curve plots predictions for point-like particles. Vertical dotted lines show z = a. Black
symbols show cl obtained for non-neutrally buoyant particles of a = 4δ from the force
balance at Re= 22.6. The inset plots cl in the central part of the channel.

0 0.05 0.10 0.15
0.18

0.20

0.22

0.24

0.26

0.28

0.30

FIGURE 4. Equilibrium positions for neutrally buoyant finite-size (grey circles) and point-
like (white circle) particles. Dashed curve shows predictions of (2.5).

perfectly fits the simulation data in the near-wall region, where the theory for point-
like particles fails. Simulation results slightly deviate from predictions of (2.5) near
the equilibrium positions and in the central part of the channel. For bigger particles,
of a = 8δ, these deviations are more pronounced. We emphasize, however, that they
are still much smaller than from the point-particle theory by Vasseur & Cox (1976).

To examine a significance of the particle size in more detail, we plot in figure 4(a)
the computed equilibrium position, zeq/H, as a function of a/H. We recall that the
lift cnb

l (z) is antisymmetric with respect to the midplane of the channel axis, so
that neutrally buoyant particles have a second equilibrium position at H − zeq. In a
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FIGURE 5. Migration velocity of non-neutrally buoyant particles in a horizontal channel.
Symbols show simulation data. Solid curve is calculation with (4.1) using data for
neutrally buoyant particles.

point-particle approximation zeq/H ' 0.19 (Vasseur & Cox 1976). We see that for
finite-size particles zeq/H is always larger, and increases with the particle size. Note
that the increase in zeq/H is nearly linear when a/H 6 0.1. Also included in figure 4
are predictions of (2.5). One can conclude that the theory correctly predicts the trend
observed in simulations, but slightly deviates from the simulation data. A possible
explanation for this discrepancy could be effects of parabolic flow (which are of the
order of O(a/H)) on the slip velocity and the stresslet (see Yahiaoui & Feuillebois
2010; Hood et al. 2015), which are neglected in our theory.

4.2. Non-neutrally buoyant particles
We now turn to the particle migration under both inertial lift and gravity forces.

4.2.1. Horizontal channel
Let us start with the investigation of migration of particles in the most relevant

experimental case of a horizontal channel (α = 0◦).
We first fix a weak gravity force, Fg = 0.694, and compute the migration velocity

of particles of radii a= 4δ in a horizontal channel. Simulation results are plotted in
figure 5. We see that Vm(z) is no longer antisymmetric, as it has been in the case of
neutrally buoyant particles. The migration velocity can be calculated as

Vm = Vnb
m − VSt/fz, (4.1)

where we use a fit for Vnb
m computed for neutrally buoyant particles (see figure 2a).

The agreement between simulation data and calculations using (4.1) is excellent,
which confirms that (2.5) remains valid in the case of slightly non-neutrally buoyant
particles. We remark that due to gravity Vm is shifted downwards relative to Vnb

m (z),
shown in figure 2. As a result, with the taken value of Fg the second equilibrium
position disappeared.
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FIGURE 6. (Colour online) (a) Equilibrium positions of non-neutrally buoyant particles
(a = 4δ) in a horizontal channel; (b) trajectories of the same particles released at z0 =

1.125a computed at different Fg = 0.268 (squares), 0.804 (diamonds), 1.340 (triangles),
2.681 (circles), 9.383 (diamonds).

We recall that this type of simulations allows one to find values of cl(z) in the
vicinity of the wall by varying Fg. We have included these force balance results in
figure 3 and can conclude that they agree very well with data obtained by using
another computational method and for neutrally buoyant particles. This suggests again
that above results could be used at moderate Reynolds numbers, Re6 20, since in this
case the lift coefficient does not depend on Re.

Figure 6(a) shows zeq/a computed at several Fg. It can be seen that when the gravity
force is getting larger, the equilibrium positions decrease rapidly. This trend can be
used to separate particles even when 1ρ is very small. To illustrate this we now fix
Re=11.3, inject particles of a=4δ close to the bottom of the channel, z0=1.125a and
simulate their trajectories at different Fg. In figure 6(b) we plot trajectories of particles,
z/a, as a function of xGmaν. The data show that if Fg is large enough, particles
sediment to the wall. However, when Fg is relatively small, particles follow different
and divergent trajectories, by approaching their equilibrium positions. We stress that at
a given Fg and a/H trajectories, shown figure 6(b), remain the same for any Re6 20
(see appendix B). Therefore, even in the case of very small 1ρ, one can always
tune the value of Re to induce the required separation difference in Fg. For example,
we have to separate particles of a = 2 µm and different 1ρ in a channel of H =
40 µm. If we chose Re= 0.3, the separation length L= 50xGmaν of figure 6(b) will
be approximately 3.3 cm. By evaluating 1ρ with (2.6), we can immediately conclude
that trajectories plotted in figure 6(b) from top to bottom correspond to 1ρ = 0.007,
0.022, 0.037 and 0.073, which are indeed extremely small.

4.2.2. Inclined channel
When Fg is large enough, it can also influence the slip velocity, and therefore,

change the lift itself. This effect is especially important for vertical channels. Note that
due to the linearity of the Stokes equations, which govern a disturbance flow at small
particle Reynolds numbers, we can decouple the contributions of the particle–wall
interaction and of the gravity force into the slip velocity:

Vs = Vnb
s +1Vs sin α, (4.2)
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FIGURE 7. (Colour online) Slip velocities (a) and 1Vs/Fg (b) computed for non-neutrally
buoyant particles of a= 4δ in a vertical channel. The data sets correspond to Fg = 3.475
(circles), 6.956 (triangles), 10.44 (squares) and 13.91 (diamonds). Dashed line shows
VSt/Fg, vertical dotted lines plot z= a.

where 1Vs=VSt/fx is the gravity-induced slip velocity for a vertical channel (α= 90◦)
and fx(z/H, a/H) is the correction to the drag for a particle translating parallel to the
channel walls. The slip and the migration velocities of particles of a= 4δ in a vertical
channel computed by using several values of Fg are shown in figures 7(a) and 8(a).
Note that the slip velocity, Vs, grows with Fg since the Stokes velocity, VSt, is linearly
proportional to Fg (see (2.7)). We now use simulation data presented in figures 2(a)
and 7(a) to compute 1Vs, and then 1Vs/Fg. The results for 1Vs/Fg are shown in
figure 7(b), and we see that all data collapse into a single curve, which confirms
the validity of (4.2). Figure 7(b) also shows that 1Vs/Fg is nearly constant in the
central region of the channel, being smaller than VSt, but the deviations from VSt grow
when particles approach the wall. These results again illustrate that hydrodynamic
interactions with the walls significantly affect the motion of particles in the channel.

We recall that the variation of the slip velocity caused by gravity is small for
slightly non-neutrally buoyant particles (see figure 7), so that (2.5) can be linearized
with respect to 1Vs:

cl ' cnb
l +1Vs

∂cl(Vnb
s )

∂Vs
, (4.3)

where cnb
l = cl(Vnb

s ) is the lift coefficient for neutrally buoyant particles. By using (3.3)
we can then calculate the migration velocity

Vm = Vnb
m +1Vm = Vnb

m +1Vs
∂cl(Vnb

s )

∂Vs

Rep

6πfz
. (4.4)

The computed migration velocity is shown in figure 8(a). We see that it decreases
with Fg, and the equilibrium position shifts towards the wall, since 1Vs/Fg is positive
while ∂cl/∂Vs is negative.

We can now evaluate 1Vm/Fg by using the simulation data presented in figures 2
and 8(a), and these results are presented in figure 8(b). As one can see, the
data collapse into a single curve, thus confirming the validity of our linearization,
equation (4.4).

ht
tp

s:
//

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

95
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 In
st

itu
tio

n 
of

 R
us

si
an

 A
ca

de
m

y 
of

 S
ci

en
ce

s 
A 

N
 F

ru
m

ki
n 

In
st

itu
te

 o
f P

hy
si

ca
l C

he
m

is
tr

y,
 o

n 
15

 F
eb

 2
01

8 
at

 1
1:

53
:5

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.95
https://www.cambridge.org/core


Inertial focusing of finite-size particles in microchannels 625

(a)

–6

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

–4

–2

0

2

4

6

–4

–3

–2

–1

0
(b)

FIGURE 8. (Colour online) Migration velocities (a) and 1Vm/Fg (b) computed for
non-neutrally buoyant particles of a= 4δ in a vertical channel. The data sets correspond
to Fg = 3.475 (circles), 6.956 (triangles), 10.44 (squares) and 13.91 (diamonds). Vertical
dotted lines plot z= a. Solid curve shows a polynomial fit of data.

Finally, we briefly discuss the case of an arbitrary inclination angle α, where the
z-component of the force can be written as

Fz = cl(Vs)+ Fg cos α. (4.5)

By using (4.2), (4.4) and (4.5), we can express the migration velocity as

Vm = Vnb
m +1Vm sin α + Fg cos α

Rep

6πfz
, (4.6)

where 1Vm is evaluated for a vertical channel (see figure 8b). The equilibrium
positions can be found by using the condition Vm = 0, where Vm is calculated
with (4.6). The results of these calculations, made at a fixed Fg= 3.475 and different
α, are plotted in figure 9 together with direct simulation data, and one can see
that they practically coincide. Our results show that in a vertical channel two
stable equilibrium positions coexist. They are symmetric relative to the midplane
and are located close to walls. Another, third equilibrium position has a locus at
the midplane, but is unstable. A similar result has been obtained earlier (Vasseur
& Cox 1976; Asmolov 1999). If we slightly reduce α both stable equilibrium
positions become shifted towards the lower wall due to gravity, as seen in figure 9.
These two positions coexist only for α > 85.7◦. On reducing α further the upper
equilibrium position disappears, and only one, a lower, equilibrium position remains.
This obviously indicates that the inertial lift cannot balance gravity anymore. We note
that this remaining single equilibrium position becomes insensitive to the inclination
angle when α 6 60◦.

5. Concluding remarks
In this paper we have studied the inertial migration of finite-size particles in a

plane channel flow at moderate Reynolds numbers, Re 6 20. We have shown that the
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FIGURE 9. Equilibrium positions zeq/H for a=4δ and Fg=3.475. Circles show simulation
data. Solid curve plots results obtained using Vm = 0, where Vm is calculated with (4.6).

slip velocity, Vs, which is finite even for neutrally buoyant particles, contributes to
the lift and determines the equilibrium positions in the channel. We have proposed
an expression for the lift which generalizes theories, originally applied for some
cases of limited guidance, to finite-size particles in a channel flow. When the
size of the particle is zero, our formula recovers the known expression of the
point-particle approximation (Vasseur & Cox 1976). For particles close to the walls
we recover earlier predictions for finite-size particles in a linear shear flow (Cherukat
& McLaughlin 1994). Our theoretical model, which is probably the simplest realistic
model for lift in a channel that one might contemplate, provides considerable insight
into inertial migration of finite-size particles in microchannels. In particular, it provides
a simple explanation of a significant increase in the lift near walls. It also allows
one to predict the number of equilibrium positions and determine their locations in
various situations.

To check the validity of our theory, we have employed lattice Boltzmann
simulations. Generally, the simulation results have fully confirmed the theory, and
have shown that many of our theoretical results have validity beyond the initial
restrictions of our model. Thus, it has been confirmed that the predictions of our
theory do not depend on Reynolds number when Re 6 20, that equilibrium positions
of heavy particles in a horizontal channel can be accurately determined by using data
for the neutrally buoyant case, and more.

Several of our theoretical predictions could be tested by experiment. In particular,
we have shown that particles with a very small density contrast should follow
divergent trajectories, so that channel flows with low Reynolds numbers Re ∼ 1 can
be used to separate such particles. We stress that our theory should correctly predict
the lift in near-wall regions also in pipes or square channels, and we expect that
for this geometry it could be accurate even at Re > 20 since the length scale of the
disturbance flow would be the distance to the wall rather than the channel width.
For this reason it would be possible to neglect the effects of other distant walls and
parabolic flow on the lift. Note, however, that these effects should be taken into
account in the central part of the channel.

Our model and computational approach can be extended to more complex
situations, which include, for example, hydrophobic walls or particles allowing
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hydrodynamic slip at their surfaces (Vinogradova 1999; Neto et al. 2005). In this
case the hydrodynamic interaction in the near-wall region changes significantly (Davis,
Kezirian & Brenner 1994; Vinogradova 1996), so that we expect that the lift force
can also be dramatically modified. It would also be interesting to consider the case of
an anisotropic superhydrophobic wall, which could induce secondary flows transverse
to the direction of applied pressure gradient (Feuillebois, Bazant & Vinogradova
2010; Vinogradova & Belyaev 2011; Schmieschek et al. 2012). It has been recently
shown (Pimponi et al. 2014; Asmolov et al. 2015) that particles translating in a
superhydrophobic channel can be laterally displaced due to such a transverse flow.
The use of this effect in combination with the inertial migration should be a fruitful
direction, which could allow us to separate particles of different size or density
contrast not only by their vertical but also by their transverse positions.
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Appendix A. Fits for the slip velocity and the lift coefficients
In this appendix we summarize known results for the slip velocity and the lift

coefficients for finite-size particles in a linear shear flow near a single wall and
for point-like particles in a Poiseuille flow. The velocity of a freely translating and
rotating particle in a linear shear flow is given by (Goldman et al. 1967)

Vnb′
x =U′(z)h, (A 1)

where h is the correction function which depends on z/a only. We use (A 1) to
estimate the slip velocity in channel flow, i.e. we neglect the effects due to parabolic
flow, so that

Vnb
s =

z(H − z)(h− 1)
aH

. (A 2)

The correction factor fitting the results by Goldman et al. (1967) in the near-wall
region reads (Reschiglian et al. 2000)

h=
200.9b− (115.7b+ 721)ζ−1

− 781.1
−27.25b2 + 398.4b− 1182

at ζ < 3, (A 3)

where ζ = z/a and b= log(ζ − 1). Note that here we have reformulated the original
equation (Reschiglian et al. 2000) in terms of the natural logarithm. For larger
distances we use the asymptotic solution by Wakiya et al. (1967),

h=
1− 5

4ζ
−3
+

5
4ζ
−5
−

23
48ζ
−7
−

1375
1024ζ

−8

1− 15
16ζ
−3 + ζ−5 −

3
8ζ
−7 −

4565
4096ζ

−8
at ζ > 3. (A 4)

Vasseur & Cox (1976) have obtained the lift force on a particle in a channel flow
at Re� 1 by using a point-particle approximation:

cVC
l = cVC

l0 +
H
a

cVC
l1 Vs + cVC

l2 V2
s , (A 5)
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where coefficients cVC
l0 , cVC

l1 , cVC
l2 depend on z/H only. Later Feuillebois (2004)

proposed a simple fitting expression:

cVC
l0 = 2.25(z/H − 0.5)− 23.4(z/H − 0.5)3. (A 6)

The expression for a lift coefficient of a finite-size particle in a linear shear flow near
a single wall has been suggested by Cherukat & McLaughlin (1994)

cCM
l = cCM

l0 + cCM
l1 Vs + cCM

l2 V2
s , (A 7)

where the coefficients cCM
l0 , cCM

l1 , cCM
l2 depend on ζ only:

cCM
l0 = 1.8081+ 0.879585ζ−1

− 1.9009ζ−2
+ 0.98149ζ−3, (A 8)

cCM
l1 =−3.24139ζ − 2.676− 0.8248ζ−1

+ 0.4616ζ−2, (A 9)
cCM

l2 = 1.7631+ 0.3561ζ−1
− 1.1837ζ−2

+ 0.845163ζ−3. (A 10)

Appendix B. Governing equations for trajectories of particles
In this appendix, we derive equations which govern particle trajectories. The

components of the particle velocity can be written as

dx
dt
= V ′x =U′(z)h=Gmz(1− z/H)h, (B 1)

dz
dt
= V ′m =

F′l − F′g
6πµafz

=
(cl − Fg)a3G2

m

6πνfz
. (B 2)

The last equality indicates that the migration time, i.e. the time required for a
particle to migrate at distance of the order of its radius a, is equal to ν/(Gma)2 =
(4GmRe)−1(H/a)2. Since the right-hand sides of (B 1) and (B 2) do not explicitly
include time, one can formulate an equation governing the particle trajectory as

dz
dx
=

a3Gm

6πν

cl − Fg

fzz(1− z/H)h
. (B 3)

Let us now turn to dimensionless coordinates ζ and ξ = xGma/ν. Equation (B 3) can
then be rewritten as

dζ
dξ
=

1
6π

cl − Fg

fzhζ (1− ζa/H)
. (B 4)

We stress that (B 4) does not depend on Re. Indeed, fz and h are dimensionless
functions of ζ and a/H only, and the lift coefficient, cl, is also not sensitive to the
Reynolds number when Re 6 20. This implies that at given Fg and a/H trajectories
satisfying (B 4) are universal, i.e. remain the same at any Re 6 20.
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