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Elastic instability and contact angles on hydrophobic surfaces
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Abstract – Surface textures are used to impart advanced wetting properties to surfaces. However,
understanding the surface response in relation to the nature of the texture is still a challenge.
Here we have measured advancing and receding contact angles on model hydrophobic surfaces
with cylindrical pillars as a function of the pillar spacing. We show that the dependences of both
advancing and receding contact angles upon spacing are well accounted for by a simple model
of the instability of the triple line, following the line elasticity theory by Joanny and de Gennes
(J. Chem. Phys., 81 (1984) 552). This result demonstrates the prominent role of the triple-line
elasticity in determining the wetting properties of textured surfaces.
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Introduction. – Controlling the work of adhesion of a
liquid to a solid w is a necessity in most areas of wetting
and fluidics. This work of adhesion, which is the energy
necessary to separate the liquid from the solid, is more
directly measured through the contact angle θ0. Indeed if
the surface tension of the liquid is γ, the work of adhesion
is given by (Young-Dupré)

w= γ(1+ cos θ0). (1)

In the specific case of low adhesion, θ0 is large, in
the 150◦ to 180◦ range. This state of repellency has
been considered in great detail because it leads to easy
fluid detachment and low friction [1,2]. Because of the
unavoidable polarisability of solid and liquid, low works
of adhesion can be achieved only by partly lifting the
liquid from the solid through surface roughness. This is the
so-called Cassie state. The general understanding on
the impact of roughness is summarized in the Cassie
equation which expresses the work of adhesion of a rough
surface as a function of the work of adhesion of a flat
surface made out of the same material. We introduce the
solid fraction φ� 1, which is the ratio of the effectively
wetted area to the apparent wetted area. The Cassie
equation is the surface average of the work of adhesion

and since areas not touching the surface do not contribute
to the work of adhesion, it stands as

1+ cos θ= φ(1+ cos θ0). (2)

These notions have been known for quite a long time,
especially for stochastically rough surfaces [3], but the
advent of microfabrication techniques has made it possible
to generate a large variety of surfaces with well-controlled,
usually periodic, roughness. A host of recent experiments
have explored the relation between roughness and work
of adhesion [4–9]. Beyond the static contact angle,
interest has also focused on contact angle hysteresis
because it is directly related to a number of properties
such as the detachment force of a drop, for example.
More specifically very rough hydrophobic surfaces usually
exhibit low hysteresis and under such circumstances
droplets require low drag force for removal. Recent
experiments have demonstrated strong impact of struc-
ture morphology on the contact angle hysteresis of
hydrophobic surfaces [4,6,7].
However, quantitative understanding is far from

complete. The Cassie equation is based on an equilibrium
average of the work of adhesion over area. But if energy
differences between neighboring configurations are larger
than the thermal energy, the capacity of the Cassie
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equation to account for intrinsically irreversible processes
should be called into doubt [10].
More advanced theories have been developed, where

some sensitivity to local triple-line conformations is intro-
duced to inject irreversibility in the Cassie equation.
Usually the validity of some rule of mixture for the
wetting properties along the triple line is assumed [5,8].
One possibility is a macroscopic approach which extrapo-
lates some local configuration energies from the measured
contact angles [11]. This method does at least qualita-
tively account for the observed increase of the receding
contact angle with decreasing pillar density. Another
method focusses on local differentials of the energy land-
scape and this differential area (DA) model [8] has also
proved successful in describing the receding contact angles
for various types of textures.
However, generally speaking, the advancing contact

angle remains a problem. It has consistently been shown
experimentally that the advancing contact angle for micro-
fabricated textured surfaces is nearly constant as the pillar
spacing increases [4,6], although the value of the constant
differs among experiments (160◦ to 175◦). Within the
modified Cassie framework [8,11], the advancing contact
angle is either predicted to be 180◦ (because the liquid
progresses on air), which is too large, or predicted to
change with solid fraction as per the Cassie equation,
which is not the case. In summary these advanced theo-
ries fail at providing a consistent picture of the wetting
properties of surfaces decorated with such sharply defined
textures.
A different path has been shown by Joanny and de

Gennes [12]. They proposed a theory for the hysteresis
of hydrophilic surfaces with random distributions of work
of adhesion. Irreversibility is connected to the local elastic
instabilities of the triple line jumping on and off these
pinning sites. Application of the concept to the calculation
of receding contact angles (or effectively hysteresis) on
hydrophobic pillar arrays has proved successful [9].
In this paper, we investigate the issue of the pinning

of the triple line on hydrophobic surfaces textured with
pillars in more detail. We have synthetized hydrophobic
surfaces with model textures and measured advancing
and receding contact angles in the Cassie state as a
function of pillar spacing. The evolutions of advancing
and receding contact angles with solid fraction (or more
specifically pillar spacing), for constant feature size, are
found to be consistent with previous experimental results.
We show that a simple elastic line pinning model provides
a consistent description of both advancing and receding
contact angles. The asymmetry between these two cases
proceeds from the nature of the boundary conditions when
the deformation of the triple line becomes unstable. The
results provide a simple demonstration of the prominent
role of the elasticity of the triple line in the wetting
properties of these surfaces.

Experiments. – Superhydrophobic surfaces were
fabricated via silica sol-gel nanoimprint lithography

Fig. 1: SEM view of a surface textured by silica sol-gel nanoim-
print lithography. Here the pillar spacing l equals 10µm. Vari-
ous surfaces were generated where the pillar geometry is kept
constant and the spacings vary from 10 to 50µm.

(SSG-NIL) [13]. With SSG-NIL we obtain silica struc-
tures with the simple and versatile conditions of sol-gel
chemistry. The patterns (fig. 1) are rigid, transparent and
defect-free. In a typical experiment, 4.5 g of methyltri-
ethoxysilane (MTES) is mixed with 1.2 g of HCl (pH= 2)
and stirred for 3 hours. The sol is spin coated on a smooth
glass substrate. The mold is made of polydimethyl-
siloxane, which easily replicates masters obtained by
photolithography on silicon wafers. It is applied onto the
spin-coated gel film with a 50 N load at 50 ◦C for 30min
followed by 90 ◦C for another 30min. As-prepared samples
were oxidized by UV-ozone treatment, hydrophobized
with 1,1,2,2-tetrahydroperfluorodecyltrichlorosilane in an
evacuated desiccator during 3 hours and carefully rinsed
with isopropanol.
The geometry of the patterned samples was charac-

terized by scanning electron microscopy and interference
profilometry and proved to match the geometry of the
masters. The patterns are cylindrical pillar arrays on
square lattices. The size of the pillars is fixed (diame-
ter d= 10µm, aspect ratio = 1) and the lattice parameter
d+ l ranges from 2d to 6d, varying the pillar density

n= (d+ l)−2 (3)

from 2.9× 108 to 2.5× 109m−2.
The contact angle measurements were performed with

water in the Cassie state. We used the volume oscillation
method on a DSA100 (Krüss, Germany). During the
experiment the volume was slowly oscillated in the range
7± 5µL for the samples with d+ l= 2d to 5d and in the
range 5± 2µL for the surface with d+ l= 6d. For large
pillar spacings the Cassie state is quite unstable and the
experiments must be conducted with care.
The results are shown in fig. 2 where normalized works

of adhesion w/γ for advancing and receding triple lines are
plotted as a function of pillar spacing. Overall the results
are similar to other data in the literature [4,7,9]. The
advancing contact angle is constant with an average value
θadv = 161

◦ i.e. a very small normalized work of adhesion
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Fig. 2: (Colour on-line) Measured advancing (right triangle)
and receding (left triangle) normalized work of adhesion w/γ =
1+cos θ as a function of pillar spacing. Error bars are mostly
smaller than the symbol size. A typical Cassie model (short-
dashed line) cannot account for the results. The DA model
(see text; dash-dotted line) provides a good prediction for the
receding triple line but concludes that the work of adhesion
is zero for an advancing triple line. In contrast, the pinning
model (dashed line) simultaneously accounts for advancing and
receding contact angles.

(around 0.05), while the receding contact angle increases
from 135◦ to 152◦ (and the work of adhesion decreases)
when the normalized spacing l/d increases from 1 to 5.

Model. – General ideas on pinning emerged in the
mid 1980s when theoretical predictions were developed
for the deformation of elastic lines propagating through
heterogeneous energy landscapes. In the field of fracture,
Rice has studied the morphology of crack fronts evolving
in a bulk with heterogeneous toughness [14]. In the field
of wetting, Joanny and de Gennes have calculated the
morphology of a triple line propagating in a landscape
of heterogeneous work of adhesion [12]. The deformation
of the line in the plane of propagation results in a long-
range elastic field (for a crack) or corrugation of the liquid
surface (for a triple line). As a result there emerges an
energy term which is quadratic in the deformation. This
term is viewed as a line elasticity. In fact the relations
between energy heterogeneities (toughness or work of
adhesion) in the plane and line deformation are identical
for cracks and for wetting.
The front shape can be calculated for a given pattern of

energy. An extreme case appears when the energy gradi-
ent in the direction of propagation is stronger than the
line stiffness, in which case local instabilities are to be
expected. Series of instabilities may be triggered cooper-
atively resulting in avalanches. This complex response of
the front shape in this so-called strong pinning case leads
to highly non-trivial behaviour and has attracted a lot of
attention in the field of statistical physics [15,16].

Fig. 3: (Colour on-line) Schematics of pinning for a receding
triple line following Joanny and de Gennes [12]. The geometri-
cal parameters of the instability are defect width d, defect posi-
tion b, nominal triple-line position y0 and triple-line deflection
y− y0. The triple-line deflection at instability is determined by
the competition between the peel force of the liquid from the
pillar surface wd and the triple-line stiffness k.

Experimental demonstrations of the phenomena
however are scarce. For fractures, the applicability of
the Rice equation has been shown by direct crack front
monitoring in semi-transparent interfaces with simple
patterns [17]. Avalanche statistics have been investigated
in model heterogeneous PMMA interfaces [18]. In the
field of wetting, front shapes were demonstrated to agree
with the Joanny-de Gennes theory and their dynamics
shown to derive from viscous dissipation [19]. Statistical
experiments were developed to analyze cooperative line
motion for wetting surfaces [20].
To analyze the wetting properties of our surfaces (fig. 1)

we follow [12]. Compared to the homogeneous surface, the
wetting energy is affected by the elastic energy barrier
resulting from the presence of the pinning sites. In this
scaling approach, we will assume square defects with width
d as in [12]. We also denote by y the position of the
deformed liquid front, by y0 its undeformed position, by b
the position of the edge of the defect (fig. 3).
For a receding triple line, the wetting energy per defect

is
Ew =−wd(y− b) (4)

and the elastic energy is

Eel = 1
2
k(y− y0)2. (5)

Here k is the elastic stiffness of the triple line characteriz-
ing the deformation energy of the liquid surface when the
triple line is distorted. We assume that the line elasticity
follows the same functional form as in the wetting case [12]
so that

k=
κ

ln
(
1+ l

d

) . (6)

This assumption sounds reasonable: in the presence of an
heterogeneity, the liquid surface deformation close to the
triple line is expected to be similar for the hydrophilic
and the hydrophobic cases, although the exact boundary
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conditions differ. Since this elastic response is ultimately
due to the liquid surface tension, the constant κ is
expected to be a fraction of the liquid surface tension γ.
Indeed in the hydrophilic case we have [12]

κ=
1

2
πγθs

2, (7)

where θs is the contact angle of the defect-free, wetting,
surface. In the present case, the exact expression for k is
unknown.
Adding up eqs. (4) and (5), we find that unstable

equilibrium occurs when

k(y− y0) =wd. (8)

At rupture the elastic energy stored in the deformation of
the front is found equal to

Eel = 1
2

(wd)2

k
. (9)

This is a rupture energy for a constant force equal to wd,
a value equal to the 90◦ peel force of an adhesive strip of
width d and adhesion w [21], for example.
To propagate the triple line, this elastic energy barrier

has to be overcome so that the effective work of adhesion
for a receding contact is

γ(1+ cos θrec) =
1

2
n
(wd)2

k
, (10)

where n is the pillar density. Following Joanny-de Gennes,
this equation is obtained by summation over independent
pinning sites, a process which is expected to be valid for
low densities. However, the result differs from the Joanny-
de Gennes theory because the distribution here is periodic
while they assumed a random distribution to account for
stochastic surfaces.
For the advancing contact angle, the line must be

deformed up to the next pillar. The critical front deforma-
tion yc− y0 for instability is expected to be of the order
of one pillar spacing (fig. 4). The necessary elastic energy
is evaluated as

Eel = 1
2
k(yc− y0)2. (11)

In contrast to the receding triple line, the elastic energy
stored at instability is calculated for a constant displace-
ment (or fixed grip). Therefore, we write that the crit-
ical front deformation yc− y0 = λl, where λ depends on
geometrical and physical parameters, but should be of the
order of 1. As a first approximation, we assume here that
λ is a constant. Finally for an advancing triple line the
work of adhesion is

γ(1+ cos θadv) =
1

2
nk(λl)2. (12)

Normalizing the line stiffness by the surface tension

k̃=
k

γ
, (13)

Fig. 4: (Colour on-line) Schematics of pinning for an advancing
triple line following Joanny and de Gennes [12]. The deflection
yc− y0 at instability is controlled by the spacing between
defects in the direction of motion of the front. No attempt
has been made at giving a realistic rendering of the actual
deformation of the liquid surface near the front.

where k is given by eq. (6), we can calculate the work of
adhesion for a receding triple line by substituting eq. (3)
into eq. (10). Normalizing the work of adhesion by γ we
obtain

1+ cos θrec =
1

2

(w/γ)2

k̃(1+ l/d)2
. (14)

Similarly for an advancing triple line, by substituting
eq. (3) into eq. (12) we obtain

1+ cos θadv =
1

2
k̃
(λl/d)2

(1+ l/d)2
. (15)

For our surfaces d= 10µm and θ0 = 110
◦ which sets

w/γ � 0.65 according to eq. (1). Following eqs. (14) and
(15), the receding and advancing contact angles for vari-
able l are plotted in fig. 2 with

κ̃≡ κ
γ
= 0.11, (16)

λ= 1.5. (17)

A good agreement with the data is obtained for both
receding and advancing contact angles.
We also compare the results with the so-called Cassie

equation (eq. (2)), which predicts an effective work of
adhesion proportional to density n and reads

1+ cos θ=
π

4

w/γ

(1+ l/d)2
. (18)

From the shapes of the curves (fig. 2) it is clear that the
Cassie equation per se can account for the dependence of
neither the receding nor the advancing contact angle, even
assuming an effective local contact angle θeff to stand for
an effective work of adhesion weff/γ.
Turning to the DA model, we calculate the differen-

tial surface texture parameter φd according to [8] and
substitute this value for the solid fraction φ in the Cassie
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equation (eq. (2)). For circular pillars on a square array,
and for a receding triple line, we find

φd,rec =
1

1+ l
d

=

√
4

π
φ, (19)

which provides a good fit to the data (fig. 2). For an
advancing triple line, however, the DA model predicts
φd,adv = 0, which does not account for the experimental
results (fig. 2).
In the pinning model, for a receding triple line (eq. (14)),

the ln(1+ l/d) factor originating from the elastic stiffness
k̃ (eqs. (6) and (13)) significantly mitigates the dependence
of the work of adhesion with density n (eq. (3)), as noted
earlier [9]. Moreover, for an advancing triple line (eq. (15)),
the inverse variation of the elastic pinning energy f(l/d) =
(l/d)2/ln(1+ l/d) very nearly compensates for the vari-
ations of the density n, resulting in an extremely flat
response for a large range of pillar spacing. As a result
the product n× f(l/d) is virtually constant over the inter-
val 1< l/d < 8 beyond which it starts to decrease more
noticeably. In fact, over the range 1< l/d < 8 the prod-
uct function n× f(l/d) rises from about 0.36 for l/d= 1
to a maximum of no more than 0.41 for l/d� 2.51 only
to slowly decrease back to about 0.36 at l/d= 8. As a
result the work of adhesion for an advancing triple line,
although finite, is very nearly constant for almost all prac-
tical purposes.
There is a strong contrast between the pinning and the

DA models for advancing contact angles. It is worth noting
that in the DA model the deformation of the triple line
holds an ambiguous status: deformation is accepted but
energy is minimized at fixed deformation. As a result the
DA model invariably predicts an advancing contact angle
equal to 180◦ for non-connected features. In contrast,
the measurements consistently return values around 165◦.
This discrepancy is often ascribed to vibrations or other
experimental imperfections [8]. In this paper we have
emphasized that the role of line elasticity may actually be
predominant in this regime. Indeed an interesting parallel
may be drawn with peeling. When peeling an adhesive
tape the direct work of the tension σ is Gd = hσ(1+ cos θ),
where θ is the supplement to the peel angle α (i.e., θ+α=
π) and h is the thickness of the tape. At equilibrium
Gd =w, where w is the adhesion energy of the tape;
however, as the peel angle α goes to zero, Gd goes to zero
as well and this equation can no longer hold. Kendall has
shown that in this case it is the (lineic) elastic energy
stored in the tape Gel = hσ

2/2E which equals the work of
adhesion [21]. For wetting, when the contact angle θ goes
to 180◦, the direct work of the surface tension (eq. (1))
goes to zero. The pinning theory suggests that in this case,
it is the contact line elasticity which takes over to mediate
between work of adhesion and contact angle, in a manner
similar to peeling.
The scaling model based on the elasticity of the pinned

triple line is quite powerful at accounting for the overall
dependence of both advancing and receding contact angles

simultaneously. In this respect note also that the values
of the two free parameters are fully consistent with the
assumptions of the model: the stiffness constant κ is
indeed a fraction the surface energy while the displacement
parameter λ is of the order of 1. For an advancing triple
line, the elastic energy of the line when it jumps to the next
pinning site is controlled by the pillar spacing. As a result
the advancing contact angle is nearly constant because
the increasing elastic energy approximately cancels the
decreasing number density. This quasi-constant is not zero
(i.e., the contact angle is not 180◦) and some energy is
indeed expended in elastic deformation. In contrast, the
receding contact angle is primarily controlled by the pillar
size because during the instability the triple line is peeled
off the top of the pillar. Hence the receding contact angle
decreases roughly as the density, with a correction due to
the weaker logarithmic factor which stems from triple-line
stiffness. For low enough densities, receding and advancing
contact angles tend to converge to the same low adhesion
value, resulting in low hysteresis.
Several refinements to the model can be considered. The

elastic response of the triple line could be modeled more
precisely and the instability conditions for both advancing
and receding cases analyzed quantitatively. In particular
the front shape and pillar geometry could then be taken
into account accurately. This more in depth analysis
can only be carried out using exact numerical solutions
provided by classical fluid [22] or liquid models [23]. Then
the direct contribution of the Cassie-like surface energy
terms could be taken into account. Such calculations
would improve the potential of the method for the design
of structures with tailored wetting properties, but it is
not expected that these more quantitative insights would
radically alter the picture of the motion of a triple line on
hydrophobic textured surfaces propounded here.

Conclusion. – Model, periodic, hydrophobic surfaces
exhibit a well-identified evolution of advancing and reced-
ing contact angles with solid area. A simple interpretation
of the data can consistently be derived from a pinning
theory which duly takes into account the elastic energy of
deformation of the contact line. For an advancing triple
line, the deformation occurs at a fixed displacement, and
the line deformation is of the order of the pillar spac-
ing, resulting in a nearly constant (and small) work of
adhesion. In contrast, line deformation proceeds at a fixed
force for a receding triple line (this is similar to a peel
force), giving a pronounced decrease of the work of adhe-
sion as the pillar spacing increases. These opposite types of
boundary conditions result in a strong contrast in energy
barriers for advancing and receding triple lines and consis-
tently account for the triple-line response at this macro-
scopic level of description.
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