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We present the results of investigations of high-speed drainage of a thin film confined between a microscopic
colloidal probe and a substrate performed with a new atomic force microscope-related setup. Theoretical
calculations are used to formulate the governing equation (force balance) for instantaneous deflection of
a cantilever spring, which is due to both concentrated forces acting on a colloidal probe and viscous drag
force on a cantilever itself. The suggested way to subtract the latter contribution allows design of a lubrication
experiment. Two pairs of interacting solids, characterized by different wettability and smoothness, immersed
into water-electrolyte solutions have been studied. Results for hydrophilic silica surfaces are in excellent
agreement with the Reynolds theory of hydrodynamic lubrication. Faster drainage of a thin film confined
between hydrophobic rough polystyrene surfaces is consistent with the theory of film drainage between
slippery surfaces. The slip lengths are found to be of the order of the size of asperities, and do not depend
on the separation and shear rate. The results are important for colloidal dynamics and nanofluidics.

I. Introduction

Recent years have seen an increase in the number of
devices available to measure interaction forces between
two surfaces separated by a thin film. Here we focus on
the atomic force microscope (AFM), which was invented1

to image the topography of surfaces but is now becoming
an important tool for investigating surface interactions.2
As in the original (static) version of the surface force
apparatus (SFA),3 in the AFM the force is obtained from
the deflection of a measuring spring or cantilever. What
is different from the SFA, where the cantilever deflection
is detected interferometrically, is that the AFM uses
electronic or digitally analyzed optical methods to sense
it. Another difference is that various electronic techniques
are used to control the motion of the surface. Besides that,
the original AFM data, that is, the deflection versus the
position of the piezo curves, are much more sensitive at
high speed than the SFA separation versus time curves.4
A corollary of all this is that the AFM is much more
convenient than the SFA for force measurements at very
high speed, that is, for studying the highly dynamic
phenomena in a thin gap. Moreover, the AFM force
measurements are always dynamic, because we always
deal with dynamic thinning, or “drainage”, of a liquid film
confined between approaching surfaces, that is, a squeeze
film geometry.5 Therefore, special care should be taken to
approach a quasi-static regime.6 Despite these obvious
advantages of the AFM design for studying thin film
drainage, this technique has only rarely been used for

high-speed lubrication (drainage) investigations.7-9 In
contrast to this, a number of SFA methods have been
developed and successfully applied for this purpose.4,10-16

The reason for such an apparent paradox is two compli-
cations connected with the use of the AFM at high speed.
First are the “hardware” difficulties, which are mostly
due to the creep and hysteresis of the oscillating piezo, its
calibration, and position control. Second are what we call
“software” complications, caused by difficulties in the
interpretation of experimental data. On one hand, this is
the direct consequence of the “hardware” problems that
lead, for example, to the uncertainty in determining the
zero in both separation and force. On the other hand, this
reflects the AFM configuration geometry, where the typical
size of a colloidal probe is much smaller than the size of
the cantilever. The complication due to viscous “hysteresis”
was already mentioned in the early reports.17-19 In the
previous paper5 of this series we have calculated, both
numerically and analytically, the contribution to the total
deflection caused by a hydrodynamic drag on the canti-
lever, and we demonstrated that it is normally non-
negligible.

This paper deals with the quantitative studying of thin
film drainage with the AFM. First we generalize the
asymptotic approach developed in ref 5 to the real situation
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of AFM force measurements, and we incorporate the
deflection due to hydrodynamic pressure on the cantilever
to the AFM force balance. One question of interest is how
to subtract accurately the contribution of viscous drag on
the cantilever to the total cantilever deflection. Another
is how to analyze the remaining concentrated force acting
on a colloidal probe. Second, we describe the dynamic force
measurements with a new AFM-related setup, which is
free from the usual AFM “hardware” problems. Third, we
present the results of such measurements for two systems.
As an initial application of the experimental technique
and theoretical method, we have chosen to study silica
and polystyrene surfaces immersed in aqueous electrolyte
solutions. Extensions of our method to study other systems
would be straightforward.

II. Theoretical Modeling

For the sake of brevity, only a condensed description of
the theory and main ideas is given here. Some of the details
are presented in Appendices.

A. Limiting Expressions for Deflection of the AFM
Cantilever. First, we summarize and extend earlier
relationships for the deflection of a tilted cantilever (as
sketched in Figure 1) which are pertinent to the present
analysis.5 We consider a rectangular cantilever of width
w and length L (assuming ε ) w/L , 1). In other words,
we limit ourselves to asymptotic expressions, which can
easily be handled.20 However, here we do not apply the
limitation of a small tilt angle, as done previously.5 One

reason is the relatively large tilt angle of the commercial
setups (13° at the Nanoscope (Digital Instrumental) and
11° in the Molecular Force Probe (Asylum Research), for
example). Another reason is that a large tilt angle can be
used to minimize the contribution to the deflection from
the viscous flow on the cantilever.

A Vertical Force at the End Only, No Drag on the
Cantilever. The force F is negative for an attractive
interaction and positive in the case of repulsion. If (dz/
dx)2 , 1, then the relation between the bending moment
due to the elastic response of a cantilever and its curvature
is described as

where I is the moment of inertia and E is Young’s modulus.
The bending moment is also equal to a torque about the

point at x, exerted by the applied force

where R is the tilt angle.
Combining eqs 1 and 2, we derive a differential equation

for the shape of the cantilever

The boundary conditions express the fact that both
position and slope are fixed at one end

This gives us the cantilever shape

and the deflection due to a concentrated force at the end
is given by

where k ) 3EI/L3 is the spring constant.
In the first-order approximation, the deflection of a

cantilever due to a concentrated force at the end does not
depend on the small tilt angle (R f 0), because in this case
eq 6 is reduced to ∆z

(1)(L) ) F/k, the equation which is
normally used to relate a deflection to a force. An important
point to note is that the use of this simplified equation
does not really affect the results of equilibrium force
measurements. Indeed, for a tilt angle of 11° (Molecular
Force Probe) the force is underestimated only by 2.8%,
and for a tilt angle of 13° (Nanoscope) it is only under-
estimated by 3.9%. This mistake can be treated as small.

A Distributed Normal Pressure Only. In the dynamic
force experiment the cantilever width and the gap between
a cantilever and substrate could be of the same order,
which could lead to a complicated description of the flow.
However, approximate expressions for the drag force can
nevertheless be written, as was suggested previously for
two spheres,22 by simply adding the drag force calculated
from Stokes flow on an isolated body and Reynolds flow

(20) We clarify our point of view by using the simplest case of a
rectangular cantilever. In reality, the cantilevers are often V-shaped.
The parallel beam approximation40 is commonly used as a model of
V-shaped AFM cantilevers in analytical evaluations of the spring
constant. Such a model, being applied to the calculation of the
hydrodynamic behavior of the cantilever, would lead to the very
cumbersome calculations. One can, however, use another approach,
based on the fact that the only combination having the dimension of
a force is µvD, where D is some characteristic size of the body. This
means that for a thin gap the drag force can be expressed as F ∼
µvD×function(D/H, D′/H), where D′ is some characteristic size. One
can, therefore, suggest that the deflection of a real V-shaped cantilever
will be determined by the equations derived in this paper, provided
that L is still the cantilever length but w is some appropriately chosen
effective width. An important point to note is that for the V-shaped
cantilevers the approximation of a narrow cantilever will often not be
valid. Therefore, the use of such cantilevers would require a more
complicated numerical approach.5

(21) Neto, C.; Craig, V. S. J. Langmuir 2001, 17, 2097.
(22) Barnocky, G.; Davis, R. H. J. Colloid Interface Sci. 1988, 121,

226.

Figure 1. AFM cantilever deflected due to a concentrated force
at one end and a nonuniform hydrodynamic pressure along the
length of the cantilever.

M ) EI d2z
dx2

(1)

M ) F(L cos R - x) (2)

F(L cos R - x) ) EI d2z
dx2

(3)

z(0) ) 0, z′(0) ) -sin R (4)

∆z
(1)(x) ) z(x) + x sin R ) F

EI(Lx2 cos R
2

- x3

6 ) (5)

∆z
(1)(L) ) F

2k
(-1 + 3 cos R) (6)
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for a thin gap. By its definition, the first force gives a
deflection which is independent of the gap.

Here we first focus on the lubrication (Reynolds) flow.
In the lubrication approximation, the Navier-Stokes
equation gives

where vt ) {vx; vy} is the tangential component of the fluid
velocity and ∇ t ) {∂/∂x; ∂/∂y}. In this notation, the
continuity equation is

where vz is the normal component of the velocity field. We
have to solve the system of differential equations (eqs 7
and 8) with the boundary conditions

with the deflection ∆z
(2) ) ∆z

(2)(x, t). Here H(t) is the
minimum gap between substrate and a cantilever. We
further assume ∆z

(2) > 0 and v < 0 for a substrate moving
in the z direction.

The assumption ε , 1 and estimates of the orders of
magnitude allow further simplification (∇t ∼ ∂/∂y) to be
made to give an analytical solution of eqs 7 and 8. Taking
into account that p ) 0 at both y ) 0 and y ) w, we derive

where

is the gap between the substrate and a deflected cantilever.
In eq 10 one can safely omit ∆z

(2). This can be justified
provided the deflection is small, that is, when ∆z

(2) , H +
sin R(L - x). This is the typical experimental situation,
because the deflection of the cantilever is usually less
than 200 nm, while the minimum possible separation H
∼ 2R, where 2R ) 3-10 µm is the typical diameter of the
attached sphere. In fact, in some resent experiments even
larger spheres were used.8,9,21 Therefore, the bending
moment is expressed as

The final integro-differential equation for a cantilever
shape ∆(x, t) is

with the boundary conditions

The governing equations for cantilever shape can be
further simplified if the velocity of deflection ∆̇z

(2) is small
compared with the speed of piezo v (In previous work5 we
have also made such an assumption). This limitation leads
to an analytical solution for the deflection of the cantilever
end:

with

where γ ) H/(L sin R). The dimensionless function γ1
/ has

been interpreted as a correction for tilt angle between the
surfaces in the expression for the deflection of a narrow
horizontal cantilever. It follows from eq 14 that the viscous
drag on the cantilever cannot change as strongly with
distance as H-3. However, this limiting case can be
expected only when γ . 1. Taking into account that H/L
is always ,1, this asymptotic form is easily violated even
for very small R. Hence, in contrast to the deflection due
to a concentrated force at the end of the cantilever, the
deflection due to the distributed hydrodynamic pressure
is sensitive to the tilt angle R even when it is small.

Theapproximation is justified (seeAppendixA)provided
that

This inequality is valid in the typical AFM force dynamic
experiment.

The deflection due to Stokes flow could be presented as

In this expression A is a fitting parameter which depends
on the cantilever geometry.

B. Force Balance. The AFM force balance should
incorporate both the (concentrated) force on the sphere
and the drag on the cantilever.

Assuming ∆z ) ∆z
(1) + ∆z

(2) + ∆z
(3), the force balance

corresponding to the dynamic force measurements can be
written as

C. Concentrated Forces Acting on the Sphere. The
forces acting on the sphere may be treated as concentrated
in the scale of our problem. In the dynamic AFM
experiment these are hydrodynamic and surface forces,
that is

The hydrodynamic force can be written as22

where h is the distance between the sphere and substrate,

∇tp ∼ µ
∂

2vt

∂z2
(7)

∂vz

∂z
+ ∇tvt ) 0 (8)

At z ) -x sin R + ∆z
(2): vz ) ∆̇z

(2), vt ) 0

At z ) -(L sin R + H): vz ) -Ḣ ) -v, vt ) 0

p )
6µy(y - w)(v + ∆̇z

(2))

D3
(9)

D ) D(x, t) ) H + sin R(L - x) + ∆z
(2) (10)

M(x, t) ) ∫0

w ∫x

L
p(x′, y)(x′ - x) dy dx′ ) -µw3[ v

2 sin R

( 1
H2

- 1
(H + (L - x)sin R)2) + ∫x

L ∆̇z
(2)(x, t) dx

(H + (L - x)sin R)3]
(11)

∂
2∆z

(2)

∂x2
) 3M

kL3
(12)

∆z
(2)(0, t) ) 0,

∂∆z
(2)(0, t)
∂x

) 0,
∂∆z

(2)(0, t)
∂t

) 0 (13)

∆z
(2)(L) ) z(L) + sin RL ) - 3vµL

8k (wH)3
γ1
/ (14)

γ1
/ ) 4γ

3 [1 - 3γ
2

+ 3γ2 - 3γ3 ln(1 + 1
γ)] (15)

∆̇z
(2)/v ∼ - 3vµ

8k sin R(wH)3
, 1

∆̇z
(3) ∼ - 3vµLA

8k

∆z ) F
2k

(-1 + 3 cos R) - 3vµL
8k [(wH)3

γ1
/ + A] (16)

F ) Fh + Fs (17)

Fh ) -6µπR dh
dt (1 + R

h
f *) (18)

Dynamic Effects on Force Measurements Langmuir, Vol. 19, No. 4, 2003 1229



and f * is the correction for deviations from the Reynolds
flow in the thin gap.

Equation 18 is in agreement with the lubrication force24

for h/R , 1 and with the Stokes drag for h/R . 1.
We stress that the hydrodynamic drag on a sphere is

proportional to the velocity of the relative motion. In the
case of a bare cantilever, this was approximately equal to
that of the moving substrate v. For an attached sphere,
this simplification is no longer valid, and in the general
case, the velocity of a sphere relative to the substrate
dh/dt * v.

One reason for deviations from Reynolds theory could
be liquid slippage over a solid surface (for a review see ref
23). The expressions for correction for slippage in the case
of surfaces with different, but constant, slip lengths are
given in Appendix B.

D. Summary. To finish this section, the deflection of
a cantilever in a dynamic force experiment in the general
case reflects both a colloidal probe-substrate interaction
and a cantilever-substrate interaction. We have formu-
lated the equations of motion (force balance) that take
both these effects into account and allow design of a
lubrication experiment. The important thing to stress is
that the contributions from different terms to the force
balance have different functional dependences on the main
experimental parameters. Therefore, they can be sepa-
rated/subtracted independently on their absolute value
and/or their ration. Below we present experimental data
that support our theoretical predictions.

III. Experimental Section
The experimental setup was similar to that described in refs

26-28. Cantilevers were fixed in a holder with R ∼ 5-20°. To
measure the drainage curves, the cuvette was moved vertically
toward the cantilever with a 12 µm range piezoelectric translator
(Physik Instrumente, Germany). This translator is equipped with
integrated capacitance position sensors, which provide measure-
ments of their actual position and further adjustment of piezo
movement. This feature leads to an accuracy of 0.005%, which
means that for piezo travel of 12 µm the maximum error is 0.6
nm. During the movement the deflection of the cantilever was
measured with an optical lever technique. For this, the light of
a laser diode (3 mW, 670 nm) was focused onto the back of the
gold coated cantilever using microfocusing optics (spot diameter
is about 8 µm), and after reflection from the cantilever and from
another mirror the position of the reflected laser spot was
measured with a two-dimensional position sensitive detector
(PSD) (SiTek, Sweden, active area 2 × 2 cm2). Drainage curves
were measured in the time range from 20 s to 250 ms per force
curve. This corresponds to driving speeds from 1 to 20 µm/s. To
calculate speed of piezo movement in the case of a triangular
drive function, we simply multiply piezo oscillation frequency by
double the piezo range distance. To convert the output voltage
of the position sensitive device to a deflection in nanometers, we
calculate the slope of the constant compliance line of the force
curve, where any change in height position is equal to the change
in deflection. The result of a force measurement is a plot of the
cantilever deflection ∆z versus the height position of the piezo
translator.

We use rectangular tipless cantilevers covered with 3 nm of
chromium and 40 nm of gold (w ) 52 µm and L ) 450 µm, which
gives ε ) 0.12). The spring constant (k ∼ 0.1-0.2 N/m) of the
cantilever was determined by the method of power spectrum

density of the cantilever thermal noise described in ref 29. To
decrease the hydrodynamic drag of the liquid on the cantilever
and in order to vary R and H independently, we have designed
a “snowman” probe (Figure 2). To fabricate “snowman” probes,
glass spheres (Duke Scientific, Palo Alto, CA) of 10 µm radius
were attached on the top of the cantilever using epoxy glue and
then clean silica or polystyrene particles (both from Bangs Labs,
Fisher, IN) were attached approximately on the top of the glass
spheres using epoxy glue or a sintering method. Spheres were
glued with UV-curing Norland optical adhesive No. 81 (Norland
Products, New Brunswick, NJ). After spheres were attached on
the cantilevers, they were exposed for 10 min under UV
irradiation (12 W, λ ) 254 nm) until complete adhesive
solidification. This glue is resistive to most organic solvents,
including tetrahydrofuran (Aldrich, Germany) and toluene, which
means the lowest level of contamination connected with the glue.
After formation of the “snowman”, probes were cleaned in an
oxygen plasma for 5 min. Immediately after cleaning, probes
were mounted in the setup and immersed in the experimental
cuvette. After 10-30 min, cantilever drift normally disappeared
and measurements were performed. The geometric parameters
of experiments for further analysis were obtained from analysis
of scanning electron microscope (SEM) microphotographs, as
shown in Figure 3.

The first pair of interacting surfaces studied was a silica or
a borosilicate glass sphere (Bangs Labs Inc., Carmel, USA) with
average radius 1.85 and 5.2 µm (prepared and attached to a
cantilever as described above) against a silicon wafer cleaned
with the same procedure. All surfaces were considered to be
hydrophilic and are found to be molecularly smooth. Root-mean-
square roughness over a 1 µm × 1 µm area was in the range 0.3

(23) Vinogradova, O. I. Int. J. Miner. Process. 1999, 56, 31.
(24) Vinogradova, O. I. Langmuir 1995, 11, 2213.
(25) Vinogradova, O. I.; Feuillebois, F. J. Colloid Interface Sci. 2000,

221, 1.
(26) Yakubov, G. E.; Butt, H. J.; Vinogradova, O. I. J. Phys. Chem.

B 2000, 104, 3407.
(27) Vinogradova, O. I.; Yakubov, G. E.; Butt, H. J. J. Chem. Phys.

2001, 114, 8124.
(28) Ecke, S.; Raiteri, R.; Bonaccurso, E.; Reiner, C.; Deiseroth, H.

J.; Butt, H. J. Rev. Sci. Instrum. 2001, 72, 4164. (29) Hutter, J. L.; Bechhöfer, J. Rev. Sci. Instrum. 1993, 64, 1868.

Figure 2. Video microscope image of an AFM cantilever with
the attached colloidal “snowman” probe. The insets show
scanning electron microscope images for various glued and
sintered “snowmen”.

Figure 3. Example of the geometric parameters of the
experiment determined from scanning electron microscope
images. S denotes the “snowman height”
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nm for both an individual sphere and a wafer. No indications of
larger asperities or peaks were detected. We treat these surfaces
as smooth, because their roughness is of the order of the accuracy
of the determination of surface separation. We also consider them
to be hydrophilic, because the measurements of the contact angle
on the silicon water, done by observation of a sessile drop with
a commercial setup (Data Physics, Germany), showed complete
wetting.30

The second pair of interacting surfaces was a polystyrene latex
sphere (Bangs Labs Inc., Carmel, USA) of radius 4.38 µm against
a polystyrene plate. The preparation of polystyrene surfaces was
done as before.27,31 Imaging of the polystyrene plate with a regular
AFM tip revealed that it is as smooth as the silica surfaces. The
polystyrene spheres were found to be significantly rougher, and
the root-mean-square roughness over a 1 µm × 1 µm area was
in the range 2.2-2.8 nm. The maximum peak-to-valley height
difference was found to be 15 nm. We therefore treat these spheres
as rough. Measurements of the contact angle on the planar
polystyrene surface have given a receding contact angle of 86°.
The advancing angle is found to be 92°. The contact angle of
polystyrene microspheres was determined with a procedure
described earlier.31,32 The contact angles measured with different
polystyrene particles varied by (4° from particle to particle. The
average receding contact angle was 68°, and the average
advancing contact angle was -92°, that is, the same as that for
a polystyrene plate.

Experiments were carried out in 10-1 M (polystyrene) and
10-3 M (glass and silica) NaCl (99.99%, Aldrich) aqueous
solutions. Water for solutions was prepared using a commercial
Milli-Q system containing ion-exchange and charcoal stages.

IV. Results

The original deflection versus distance curves for a
typical force experiment performed at different speeds
are shown in Figure 4 (top). The zero deflection (force)
position was determined by invoking symmetry of the
hydrodynamic force acting on the system (cantilever and
sphere) at large separation during approach and retrac-
tion. Surface forces acting on the sphere are, in the general
case, negligibly small at separations larger than 1 µm. In
our case, they can be ignored at distances above 20 nm.
Therefore, the zero-deflection position corresponds to the
middle line of the long-range part of the drainage curve.
One can see that the absolute value of deflection increases
with the approaching velocity and decreases with the
separation. This confirms that the total deflection mea-
sured in the experiment contains a hydrodynamic con-
tribution. The large range of measured deflection suggests
that the drag on a cantilever plays an important role.

A. Viscous Drag on a Cantilever. We now start with
the analysis of data for the deflection of the cantilever at
long-range distances due to nonuniform hydrodynamic
pressure. Measurements presented in Figure 4 (bottom)
test the approximate expressions (eq 14) for the deflection
due to drag on a cantilever. Here we illustrate our approach
by using a relatively small tilt angle (R is roughly 4°) in
order to have a larger contribution to deflection due to
flow around the cantilever. The results of several series
of measurements are also presented in the scaled form.
The scaling is chosen according to eq 14. The results from
several experiments suggest that the measurements are
in perfect agreement with the theoretical predictions and
that for all the experiments (with this particular config-
uration geometry) the Stokes drag can be described by
taking A ) 36. Therefore, in the subsections below we
present and analyze only the concentrated force acting on

the sphere obtained by subtracting the deflection of the
cantilever from the total deflection measured. The error
we introduce with such a procedure is mostly due to
uncertainty in the measurement of the tilt angle ((1°).

B. Interaction of Smooth Hydrophilic Silica and
Glass Surfaces. The aim of this subsection is to dem-
onstrate that one can make a quantitative analysis of the
concentrated force acting on a sphere. As a first step, the
procedure includes the DLVO fit for simple simple silica
and glass systems at low speed. One question of interest
is, “When can the AFM force measurements be treated as
a quasiequilibrium?” In other words, “Which speed can be
considered to be slow enough to avoid a dynamic contri-
bution to the deflection versus position curve?” It follows
from our results that a speed below 1 µm/s can normally
be treated as slow. There is no speed dependence of the
total deflection at v below 1 µm/s, but a higher speed of
a piezo translator gives different results for different
speeds, which indicates a contribution from hydrodynamic
drag. At low speed the force is exponentially decaying
with a decay length equal to the Debye length for our
electrolyte solution (in all these experiments we used 10-3

M solutions). The parameters of this double layer repulsion
Fs have been obtained from measurements at speed 0.1
µm/s for every given pair of interacting surfaces. We also
remark that these quasi static force measurements have

(30) Unfortunately, to our knowledge, there is no routine way of
making contact angle measurements on hydrophilic microspheres.

(31) Yakubov, G. E.; Vinogradova, O. I.; Butt, H. J. Colloid J. 2001,
63, 518.

(32) Yakubov, G. E.; Vinogradova, O. I.; Butt, H. J. J. Adhesion Sci.
Technol. 2001, 14, 1783.

Figure 4. Total cantilever deflection in the dynamic AFM force
experiment (R ) 5.0 ( 0.5°). (top) Original data obtained at the
driving speeds (20 µm/s (1), (15 µm/s (2), and (10 µm/s (3).
The experiment was performed with a 1.9 µm snowman probe
(“snowman height” is 14.0 µm). (bottom) Set of different
measurements presented in the scaled form: scaled deflection
is -8∆z/(3kvµL); scaled distance is γ1

/(w/H)3. Approach speed
varied from -6 to -20 µm/s; the “snowman heights” and sphere
radii were from 10.4 µm to 15.2 µm, and from 1.9 µm to 5.4 µm,
correspondingly. The straight line has the slope “1” (“-1” for
the retraction part of the curve). The negative and positive
“peaks” correspond to the regions close to the initial distance
and contact. These regions have been excluded from the analysis
of a flow on cantilever, because here its deflection is not solely
due to a drag force on it.
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revealed neither any hysteresis between approach and
retraction data nor an adhesion peak.

Figure 5 shows the original drainage data obtained at
different driving speeds and a scaled hydrodynamic force.
Two ways have been used to analyze the hydrodynamic
force. The first algorithm was similar to that used
previously in the SFA experiment4,13 and included a
numerical solution of the differential equation (eq 17) for
a concentrated force to fit the experimental data. In this
procedure we used the experimentally measured values
of R, h, k, A, and parameters of the double layer force,
obtained from low-speed measurements. Then, performing
the least-squares fit of data for a concentrated force, we
obtain the slip lengths b1 and b2 for interacting surfaces.
The second algorithm was based on subtracting the double
layer force from the total force acting on the sphere and
on a subsequent analysis of Fh, by assuming it is described
by eq 18. This analysis included a calculation of f * for a
given h, and a least-squares fit of this correction for
slippage to get b1 and b2. It was found that both approaches
lead to the same results. The main conclusion made from
the inspection of experimental data (see Figure 5) is that
no slippage (b1 ) b2 ) 0 ( 1 nm) is observed within the
experimental accuracy. The important point to note is
that the large sphere of the “snowman” configuration does
not implicate our results. Rough estimates of the possible
contribution of such a sphere are given in Appendix C.
The substitution of typical experimental values to eq 20
suggests that the contribution from the large “snowman”
sphere never exceeds 5% of the drag acting on the small
sphere in the lubrication regime. This is confirmed by the
fact that the same results (i.e. no slip) are obtained both

for a silica sphere of radius 1.85 µm of the “snowman”
probe and for a borosilicate glass sphere of radius 5.2 µm
attached to a cantilever. Our experiment, therefore, does
not confirm the recent statement,9 made for a similar
system (borosilicate sphere of R ) 10 µm against a silicone
wafer), that the smooth hydrophilic surface is character-
ized by a rate dependent slip length of the order of 10 nm.
Unfortunately, we cannot comment more about the
reasons for such a discrepancy, because a lot of the details
of analysis are omitted in that publication.

In summary, our results for smooth hydrophilic surfaces
are in excellent agreement with the Reynolds theory of
hydrodynamic lubrication with no-slip boundary condi-
tions. It would be useful to those interested in measuring
hydrodynamic forces to have some feeling about the
relative contribution of different terms to the total
deflection described by eq 16. We are now in a position to
estimate it. Table 1 illustrates how important the different
terms could be depending on the driving speed and
separation. One can see that, for the high speed experi-
ment, the contribution due to the cantilever is indeed
significant and has to be subtracted by using our model
and a large distance fit, as suggested here. At low speed
the contribution from flow on a cantilever can safely be
ignored, and the deflection is mostly due to colloidal forces.
However, even at such a speed there could be some
contribution from the hydrodynamic force on the sphere
acting at separations of a few nanometers.

C. Interaction of Rough Hydrophobic Polystyrene
Surfaces. The quasi-equilibrium colloidal interactions
between hydrophobic polystyrene surfaces have been
studied before.27,35 It was found that two types of interac-
tion in such a system are possible. One is observed only
in dilute solutions and is of electrostatic origin.27 An-
other27,35 is characterized by an abrupt long-range jump
of the surfaces into contact due to formation of nanobub-
bles36-39 at the rough hydrophobic surface of polystyrene
spheres. Here we focus only on the drainage behavior of

(33) Vinogradova, O. I. Langmuir 1998, 14, 2827.
(34) Vinogradova, O. I. Langmuir 1996, 12, 5963.
(35) Considine, R. F.; Hayes, R. A.; Horn, R. G. Langmuir 1999, 15,

1657.
(36) Vinogradova, O. I.; Bunkin, N. F.; Churaev, N. V.; Kiseleva, O.

A.; Lobeyev, A. V.; Ninham, B. W. J. Colloid Interface Sci. 1995, 173,
443.

(37) Bunkin, N. F.; Lobeyev, A. V.; Movchan, T. G.; Ninham, B. W.;
Vinogradova, O. I. Langmuir 1997, 13, 3024.

(38) Ishida, N.; Inoue, T.; Miyahara, N.; Higashitani, K. Langmuir
2000, 16, 6377.

(39) Tyrell, J. W. G.; Attard, P. Langmuir 2002, 18, 160.
(40) Sader, J. E. Rev. Sci. Instrum. 1995, 66, 4583.

Figure 5. Hydrodynamic force acting on the hydrophilic
spheres. (top) Original force vs distance data obtained with a
5.2 µm probe at the driving speed -20 µm/s (triangles), and a
theoretical curve obtained by numerical solution of the force
balance equation (solid curve). (bottom) Scaled hydrodynamic
force -Fh/(6πµ dh/dt) - 1 plotted against R/h. Driving speed
was -20 µm/s (curves 1 and 3) and -10 µm/s (curves 2 and 4);
cantilever sample distances (1, 2-10.4 µm; 3, 4-14.0 µm);
sphere’s radii (1, 2-5.2 µm; 3, 4-1.9 µm). The slope of the solid
line is equal to f * ) 1.

Table 1. Contribution from Different Terms to the
Deflection of a Cantilever in a Typical High-Speed

Experiment (Borosilicate Glass Sphere of R ) 5.2 µm)a

h, nm ∆z, nm ∆z
(1), nm ∆z

(2) + ∆z
(3), nm

v ) 20 µm/s
3000 2.3 2.3
1000 2.7 0.1 2.6
100 3.8 1.0 2.8
20 8.1 1.3 3.9 2.9
5 17.2 6.2 8.2 2.9

v ) 1 µm/s
3000 0.1 0.1
1000 0.1 0.1
100 0.2 0.1 0.1
20 1.6 1.3 0.2 0.1
5 6.8 6.1 0.5 0.1

a In the column for ∆z
(1) the numbers on the left correspond to a

contribution from a surface force, and the numbers on the right to
a contribution from a hydrodynamic force.
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this system, where the attractive surface interaction is
mediated by nanobubbles. Due to complicated analysis of
double layer forces in such a system, we here use only
10-1 M solution and are therefore in the situation when
the double layer forces are of much shorter range and
weaker than hydrodynamic drag.

Figure 6 presents the results obtained in several series
of measurements. Presentation of the results in scaled
form clearly demonstrates that drainage is faster than
that for the hydrophilic case even before the jump into
contact. The analysis of data was performed in a way
similar to what we used in the previous subsection. The
best fit was provided when the values of the slip lengths
were constant and confined between the pairs b1 ) 10 (
1 nm against b2 ) 0.5 ( 1 nm, and b1 ) b2 ) 4 ( 1 nm.
In other words, the drainage of a thin film confined
between hydrophobic rough polystyrene surfaces is in
agreement with the theory of film drainage between
slippery surfaces,24 and the slip lengths are of the order
of the size of asperities. Whether this is a consequence of
roughness itself, or nanobubble formation on a rough
hydrophobic surface, remains an open question which will
be studied in future publications. Our current approach
does not allow us to draw any further conclusions about
the origin of slippage in polystyrene systems.
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Appendix A: Assumption of Small Deflection
Velocity

The assumption that led to eq 14 is that the deflection
velocity is small as compared with v, or ∆̇z

(2)v , 1. We will
now check under which experimental conditions this is
indeed true and if this condition is equivalent to a condition
of a small deflection, which is always valid.

Taking the time derivative of ∆z
(2), we find

with

One can show that Γ × γ3 ) O(1) for realistic values of
γ. Therefore,

Using typical numerical values of experiment, we get
∆̇z

(2)/v ∼ 10-4; that is, the deflection velocity is indeed
small.

Appendix B: Correction for Slippage in the
Equations for a Viscous Drag on a Sphere

In the case of surfaces with different, but constant, slip
lengths b1 ) b ) âh and b2 ) b(K + 1) ) âh(K + 1), where
K can have values between -1 and ∞, it takes the form24,25

with

We note that, due to a misprint, the factor 2 in the first
term of case iii was lost in ref 24 (and corrected in ref 25).
This, however, did not affect the limiting expression for

Figure 6. Hydrodynamic force acting between hydrophobic
polystyrene surfaces. (top) Original force vs distance data
obtained with a 4.9 µm probe (triangles) (driving speed -20
µm/s) against a polystyrene surface. The solid curve corresponds
to the theoretical calculations for symmetric cases with slip
length 4 nm. The dotted arrow shows jump into a contact.
(bottom) Scaled concentrated hydrodynamic force [Fh/(6πµ dh/
dt) - 1] acting on the hydrophobic polystyrene spheres plotted
against R/h. Driving speed was -20 µm/s (curves 1 and 3) and
-10 µm/s (2); “snowman heights” were 13.3 µm (1, 2) and 12.4
µm (3); small sphere radii were 4.9 µm (1, 2), 4.4 µm (3), and
1.9 µm (4). The solid line corresponds to the no-slip case. The
dashed line corresponds to a slip case with the slip length 4 nm.
The dotted arrow shows jump into a contact.

∆̇z
(2)

v
) - 3µvw3Γ

8kL3 sin4 R

Γ ) - 2
3

γ + 4 - 3γ2 - 6γ3

γ3(γ + 1)
- 4 ln(1 + 1

γ)

∆̇z
(2)

v
∼ - 3vµ

8k sin R(wH)3

(i) K f -1

f * ) 1
4(1 + 3‚2‚ 1

4â[(1 + 1
4â) ln(1 + 4â) - 1])

(ii) K f ∞

f * ) 1
4

‚2‚ 1
3â[(1 + 1

3â) ln(1 + 3â) - 1]
(iii) K * -1, K * ∞

f * ) -
2x1

âx2x3
- 2

â2(x3 - x2)[(âx2 + 1)(x2 - x1)

x2
2

ln(1 +

âx2) -
(âx3 + 1)(x3 - x1)

x3
2

ln(1 + âx3)] (B1)

x1 ) 2 + K

x2 ) 2(2 + K + x1 + K + K2)

x3 ) 2(2 + K - x1 + K + K2)
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K f 0 derived in ref 24 and intensively used during the
last few years.9,13,15,16

Appendix C: Estimate of the Hydrodynamic
Interaction between the Large Sphere of the

“Snowman” and Substrate

The presence of the large “snowman” sphere of radius
R2 can contribute to the deflection of the cantilever,
because this sphere can interact hydrodynamically with
the substrate. Determination of the exact amount of this
hydrodynamic interaction would require a complicated
three-dimensional Stokes flow problem. We can neverthe-
less give an estimate of this effect by using the simplified
approach suggested in ref 5. The main assumption is that
at r e R1 the flow is blocked by the small sphere of radius
R1, but at r > R2 the flow is not affected by the attached
sphere.

The standard consideration (see, for example, ref 34)
leads to the following differential equation for pressure
p

where H ) h + r2/2R2. Then the assumption dp/dr ) 0 at

r ) R1 leads to

The expression for a force is given by

where h1 ) h + R1
2/2R2. The integration gives

with A1 ) R1/R2 < 1 and A2 ) R1/h ) R1/(h* + 2R1) ∼ 1/2.
If A1 , 1, the equation for a force can be further simplify
and give

LA026419F

d
dr(H3r dp

dr) ) 12µvr

p )
3µvR2

H2
+

3µvR1
2

h3 [ h2

2H2
+ ln(1 - h

H) + h
H]

Fh ) 2πR2∫h1

∞
p dH

Fh )
6πµvR2

2

h (1 + A1A2[A1A2

2
ln(1 + 2

A1A2
) - 1]) (C1)

Fh ∼ 3µπvR2
2

R1
(1 -

R1

2R2
)
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