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We consider two charged semipermeable membranes which bound bulk electrolyte solutions and
are separated by a thin film of salt-free liquid. Small ions permeate into the gap, which leads to a
steric charge separation in the system. To quantify the problem, we define an effective surface charge
density of an imaginary impermeable surface, which mimics an actual semipermeable membrane
and greatly simplifies the analysis. The effective charge depends on separation, generally differs
from the real one, and could even be of the opposite sign. From the exact and asymptotic solutions
of the nonlinear Poisson-Boltzmann equation, we obtain the distribution of the potential and of
ions in the system. We then derive explicit formulae for the disjoining pressure in the gap and
electro-osmotic velocity and show that both are controlled by the effective surface charge. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4965816]

I. INTRODUCTION

Electrostatic Diffuse Layer (EDL) is usually defined
as the region where the surface charge is balanced by
the cloud of counterions and local electro-neutrality is not
obeyed. It determines both static and dynamic properties
of charged objects and results in a variety of phenomena,
important for both fundamental and practical applications.
Extending over hundreds molecular diameters, it results in
long-range electrostatic forces between surfaces,1–3 which
control coagulation stability4–7 and open many opportunities
for electrostatic self-assembly.8–11 EDL also responds to an
external electric field, leading to various kinds of electrokinetic
phenomena.12–16 The majority of previous work on colloidal
forces and electrokinetics has assumed that surfaces are
impermeable, so that the EDL profile is determined by the
surface charge density and the Debye length of bulk electrolyte
solution.17,18

The assumption that surfaces are impermeable for ions
becomes unrealistic in colloidal systems where membranes are
involved. In such cases, another factor, surface permeability,
comes into play and strongly affects EDLs, so it becomes
a very important consideration in interactions involving
membranes or determining electrokinetic phenomena. The
body of work investigating EDLs near permeable charged
surfaces is much less than that for impermeable objects,
although there is a growing literature in this area.19–21

Here we explore what happens when surfaces are
semi-permeable, i.e., impermeable for large ions, but allow
free diffusion of small ions. Examples of such surfaces
abound in our everyday life. They include bacterial and
cell membranes,22 viral capsids,23 liposomes with ion chan-
nels,24,25 polymersomes,26,27 and free-standing polyelectrolyte
multilayer films.28–31 In efforts to understand the connection
between EDLs and semipermeability, their formation near

membranes has been studied over several years and by several
groups.23,24,32–34 These investigations so far have been limited
by the simplest case of electro-neutral membranes and have
shown that a steric charge separation in such a system gives
rise to a finite surface potential.35 This means that due to
semi-permeability electro-neutral surfaces demonstrate the
properties of charged systems.32–34,36,37 In reality, the majority
of semipermeable surfaces are charged. For example, the
polyelectrolyte multilayers take a charge of the last deposited
polyelectrolyte layer and the channel proteins determine a
charge of biological membranes. However, we are unaware
of any previous work that has considered the combined effect
of a membrane charge density and a semi-permeability on
generation of electrostatic potentials and EDLs.

In this paper, we first consider electro-osmotic equilibria
between bulk solutions of electrolyte bounded by charged
semi-permeable membranes and separated by a thin film of
salt-free liquid (see Fig. 1). We restrict our consideration to
mean-field theory based on the non-linear Poisson-Boltzmann
equation (NLPB). We then discuss implications of our
theory for the electrostatic interaction of semipermeable
membranes and electro-osmotic flow in a nanochannel with
semipermeable walls.

II. GENERAL THEORY

A. Model

Consider a solvent confined between two parallel
semipermeable membranes at a separation h, both are in
contact with an electrolyte reservoir. Small (here positive with
a charge z) ions are free to pass through membranes and
leak out from the salt reservoir into the gap, but large (here
negative with a charge Z , |Z | > |z |) ions cannot permeate
through it. This gives rise to a steric charge separation and
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FIG. 1. Sketch of the bulk solutions of electrolyte bounded by charged
semi-permeable membranes and separated by a thin liquid film of thickness
h. Concentrations of large and small ions far from membranes are equal to
C∞ and c∞. Membranes are permeable for small ions only, which partly
penetrate to the gap. Large ions remain in the region |x | > h/2. A steric
charge separation strongly affects a disjoining pressure, Π(h), in the gap. The
application of a tangential electric field, E , leads to electro-osmotic flows of
a solvent (shown by arrows).

inhomogeneous equilibrium distribution of ions as sketched
in Fig. 1. Similar system with neutral membranes has been
considered before.33 Now we assume that membranes have
a surface charge density, σ̃, which could be either due to
the dissociation of functional surface groups or due to the
adsorption of ions from solution to the surface.1

As before, we use the continuum mean-field description
by assuming point-like ions and neglecting ionic correlations.
Non-uniform averaged ionic profiles can then be described by
using a non-zero electrostatic potential φ(x) ≡ zeψ/kBT and
Boltzmann distribution

ci,o(x) = c∞ exp(−φi,o),
Co(x) = C∞ exp(−Z̃φo).

Here φi,o = zeψi,o/kBT are the dimensionless electrostatic
potentials and ci,o, Co are the concentrations of small and
large ions, respectively, where indices {i,o} indicate inner
(|x | < h/2) and outer (|x | > h/2) solutions.

The NLPB equation for the dimensionless electrostatic
potential φ is then given by

∆φo = −κ2
i

(
e−φo − e−Z̃φo

)
, (1)

∆φi = −κ2
i e−φi, (2)

where the inner inverse screening length, κi, is defined
as κ2

i = 4πℓBc∞ with ℓB = z2e2/(4πϵϵ0kBT) the Bjerrum
length, Z̃ = Z/z (<0) is the valence ratio of large and
small ions, and c∞ is the concentration of small ions at
|x | → ∞. The outer inverse screening length, κo, which
represents the inverse Debye length of the bulk electrolyte
solution, can be defined as κ2

o = 4πℓB(Z̃2C∞ + c∞), where
C∞ is the concentration of large ions at infinity. Since
the electroneutrality condition ZC∞ + zc∞ = 0 is employed,

κ0 = κi
√

1 − Z̃ . We recall that the NLPB has been proven to
adequately describe a semipermeable membrane system even
at a high valence ratio, Z̃ = −5.32

To solve Eqs. (1) and (2) at the membrane surface,
|x | = ±h/2, we have to impose the boundary condition of the
continuity of the potential and the one of the discontinuity of
the electric field

φ′i(h/2) − φ′o(h/2) = κiσ, (3)

where σ = 4πℓBσ̃/e
κi

is the dimensionless surface charge
density. At the midplane, x = 0, the electric field vanishes
due to symmetry, φ′i = 0. Finally, we set φo → 0 at infinity.

Now it is convenient to define inner and outer diffuse
layer charges

σ̃D
i =

h/2
0

zeci(x)dx,

σ̃D
o =

∞
h/2

[zeco(x) − ZeCo(x)]dx,

(4)

which satisfy a global electroneutrality condition

σ + σD
i + σ

D
o = 0. (5)

It follows from Gauss’s theorem that

κiσ
D
o = φ

′
o(h/2), κiσD

i = −φ′i(h/2), (6)

which suggests that Eq. (3) is equivalent to Eq. (5). It is
therefore always possible to construct imaginary impermeable
surfaces with an effective surface charge density σeff, which
induce the same potential and, therefore, mimic actual
semipermeable membranes. Such an effective charge is equal
to −σD

i for an inner area, and to −σD
o for an outer reservoir,

and fully characterizes electro-osmotic equilibria in the system
of real membranes.

B. Concentration profiles and electrostatic potential

To illustrate the approach, we begin by studying
concentration profiles of small ions obtained by solving
numerically Eqs. (1) and (2) for different values of membrane
surface charge σ. Calculation results are shown in Fig. 2.
We see that away from membranes (|x − h/2| ≫ κ−1

o ) density
profiles turn to c∞. However, in the vicinity of membranes
they are generally non-uniform due to EDL formation in both
inner and outer regions. When membranes are close to each
other, κih = 1 (see Fig. 2(a)), inner EDLs strongly overlap.
When the surface charge is negative, the concentration of
small ions, cm, at the mid-plane is finite and for large negative
charges, it can be larger than c∞. In other words, we observe
a small ion enrichment in the thin film. In the case of the
positive surface charge, cm is always smaller than c∞, i.e., we
deal with a small ion depletion.

We note that in our case the depletion effect is due to
surface permeability, but not due to a dielectric contrast as
it would be in the case of lipid bilayers in an electrolyte
solution. At a large positive surface charge density, the
distribution of small ions in the gap becomes uniform and
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FIG. 2. Calculated density profiles of small ions for (a) overlapping EDLs, κih = 1, (b) intermediate case, κih = 3, and (c) non-overlapping EDLs, κih = 10.
From top to bottom σ =−5; −2; −0.5; 0; 2; 5.

even nearly vanishing, which indicates that only outer EDLs
are formed to balance the surface charge. When the gap is
large, κih = 10 (see Fig. 2(c)), inner EDLs practically do not
overlap. We also see that in this case, we always observe
a small ion depletion in the gap. At large positive surface
charges, small ions practically do not diffuse into the gap.
Altogether the numerical results presented in Fig. 2 indicate
that the formation of EDLs near semi-permeable surfaces no
longer reflects the sole surface charge density.

We remark and stress that the charge of EDLs is not
always opposite to the surface charge, as it would be expected
for impermeable walls. Since only small ions penetrate the
gap, so that the inner region can be only positively charged or
nearly neutral (if membranes are strongly positively charged
as discussed above), σD

i ≥ 0. A vanishing σD
i indicates that

inner EDLs disappear and practically all diffuse charges are
outside the slit,σD

o ≃ −σ. Eq. (5) implies that the outer EDL is
negatively charged, if σ ≥ 0. However, for negatively charged
membranes, the situation can be more complicated than the
usual picture. For a relatively small negative surface charge
we observe σD

o < 0, but for higher negative surface charges
σD

o becomes positive. Therefore, at a certain surface charge,
σ = σ0 < 0, the outer double layer should fully disappear,
since all diffuse charges are confined in the slit, σD

i = −σ.
The distribution of a potential calculated for a fixed thick

film, κih = 10, and different values of σ is shown in Fig. 3.
We first remark that in the case of neutral membranes, σ = 0,
the surface potential, φs, is positive, and the distribution of a
potential in the system is inhomogeneous. This observation
has been reported before.33 The surface potential is always of
the same sign as the surface charge for large |σ |, but at low

FIG. 3. A distribution of a potential in the system obtained from NLPB
theory at κh = 10. From top to bottom σ = 5; 2; 0; −0.5; −2; −5.

values of negative surface charge, φs could vanish or become
positive.

Let us now use Eq. (2) to obtain exact expressions for
concentration and potential profiles in the slit. This leads to a
Gouy-type expression33

φi = φm + ln

cos2 *

,

√
2

2
e−φm/2κix+

-


, (7)

where φm is the (dimensionless) potential at the mid-plane.
By comparing the Gouy solution1 for impermeable surfaces
with Eq. (7), we can define the effective surface charge
as φ′i(h/2) = κσeff, i (cf. Eq. (6)). The dimensionless inner
effective surface charge is then

σeff, i = −
√

2e−φm/2 tan *
,

√
2

2
e−φm/2κi

h
2
+
-

(8)

and the outer effective charge always differs from the inner
and is given by σeff,o = σ − σeff, i. We note that Eq. (8)
indicates that effective charges depend on separation between
membranes.

In many cases, properties of the system can be related
to φs or φm. Therefore, below we focus on their analysis.
First, we rewrite the differential equations for a potential, φ,
into self-consistent algebraic equations for φs and φm. The
equation for φs follows immediately from Eq. (7) by setting
x = h/2,

φs = φm + ln

cos2 *

,

√
2

2
e−φm/2κi

h
2
+
-


. (9)

The derivation of the equation for φm requires integration
of Eqs. (1) and (2),

1
2κ2

i

(
∂φo
∂x

)2

= e−φo − 1 − 1
Z̃

(
e−Z̃φo − 1

)
, (10)

1
2κ2

i

(
∂φi
∂x

)2

= e−φi − e−φm. (11)

By setting x = h/2 and applying the boundary condition
for φ′ we obtain Grahame-type equations for inner and outer
regions

1
2
σ2

eff,o = e−φo − 1 − 1
Z̃

(
e−Z̃φs − 1

)
, (12)

1
2
σ2

eff, i = e−φs − e−φm. (13)

Note that for semi-permeable membranes, we have used the
effective charge instead of σ. By using the definition of an
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effective charge, we derive the second relation between φs and
φm,

e−Z̃φs = 1 − Z̃
(
σ2

2
− σeff, iσ + 1 − e−φm

)
. (14)

C. Asymptotic analysis

In the general case, the system of Eqs. (9) and (14)
should be solved numerically, but in some limits we can
derive asymptotic analytical expressions, which relate φs and
φm with σ and parameters of the system. Below we focus on
limits of large and small κih and on situations of strong and
weak σ.

1. Large κih

In a regime, κih ≫ 1, typical for concentrated solutions
and/or very thick gap, it is convenient to introduce a new
variable ξ by using Eq. (9) as

√
2

2
e−φm/2κih/2 =

π

2
(1 − ξ). (15)

Hence the surface potential in Eq. (9) can be expressed as

φs = 2 ln


κih sin(ξπ/2)
√

2π(1 − ξ)

. (16)

One can easily prove that ξ decays from 1 to 0 with the
increase in κih from 0 to ∞, so that it is small, when κih is
large. Since φs is bounded by a constant, ξ decays with κih as

ξ ≃ eφs/22
√

2

2
√

2eφs/2 + κih
(17)

and the midplane potential reads

φm ≃ 2 ln


√
2

2π(1 − ξ) κih

∝ ln(κih)2. (18)

Since in this limit ξ ≪ 1, it can be neglected in the first-order
approximation. Then Eq. (18) reduces to the known result
for neutral membranes.33 This suggests that at large κih the
midplane potential, φm, is insensitive to σ being controlled
mostly by κih.

When φm is large, we can derive relation between the
surface charge and surface potential

e−Z̃φs + Z̃
√

2e−φs/2σ ≃ 1 − Z̃ − Z̃
σ2

2
(19)

which allows us to construct then the asymptotic solutions
for strongly charged surfaces, |σ | ≫ 1. For negative surface
charges, φs is also negative, e−Z̃φs ≪ 1 and e−φs/2 ≫ 1, which
leads to

φs ≃ −2 ln

−2(1 − 1/Z̃) + σ2

2
√

2σ


∝ − lnσ2. (20)

For large positive charges and hence positive φs, we can use
e−Z̃φs ≫ 1 and e−φs/2 ≪ 1 to derive

φs ≃ −
1
Z̃

ln
�
1 − Z̃ − Z̃σ2/2

�
∝ 1

| Z̃ | lnσ2. (21)

In the case of weak charges, |σ | ≪ 1, one can construct first-
order correction to the surface potential of neutral membranes,
φ0
s = − 1

Z̃
ln(1 − Z̃),33 which takes the form

φs = φ
0
s +
√

2e(Z̃−
1
2 )φ0

sσ ∝ σ. (22)

We remark and stress that in all cases above φs does not
depend on κih being a function of only σ and Z̃ .

These expressions for φs together with Eq. (8) can be
used to calculate the inner effective charge

σeff, i ≃ −
√

2e−φs/2 (23)

and the outer effective charge is then

σeff,o ≃ σ +
√

2e−φs/2. (24)

An important point to note that σeff, i and σeff,o differ from σ,
but do not depend on κih. For neutral surfaces inner and outer
effective charges have the same absolute value, but are of the
opposite sign.

2. Small κih

Now we investigate the system at κih ≪ 1. Such a
situation would be realistic for a very dilute solution and/or
very thin gap. The asymptotic analysis can be performed
with the procedure described above, although now 1 − ξ
should be taken as a small parameter. However, in this limit,
another, a simpler analysis can be used. Since inner diffuse
layers strongly overlap, one can easily verify that φm ≃ φs
(a difference between these two potentials, ∝ (κih)2/8, which
can be shown by series expansion of Eq. (9)). Eq. (14) then
allows us to obtain the relation between the surface charge
and potential

σ2/2 + e−φsκihσ/2 = e−φs − 1 − 1
Z̃

(
e−Z̃φs − 1

)
. (25)

For strongly positively charged surfaces, φs is positive.
This implies e−φs ≪ 1 and Eq. (25) reduces then to Eq. (21),
so that φs does not depend on κih.

For strong negative charges, e−Z̃φs ≪ 1 and we get

φs ≃ − ln


2(1 − 1/Z̃) + σ2

2 − κihσ


∝ − lnσ2. (26)

In the case of weakly charged surfaces, the expansion in
the vicinity of the solution for neutral membranes33 gives

φs ≃
κih + 2σ

2
√

1 − Z̃
∝ κih + 2σ. (27)

Finally, by combining the expressions for φs with Eq. (8),
we evaluate an inner effective charge, which in this limit
depends on κih,

σeff, i ≃ −
e−φsκih

2
. (28)

Whence an outer effective charge is

σeff,o ≃ σ +
e−φsκih

2
. (29)

We emphasize that σeff, i and σeff,o are now becoming
dependent on κih. However, since κih ≪ 1, one can conclude
that one can roughly consider σeff, i ≃ 0 and σeff,o ≃ σ.
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III. RESULTS AND DISCUSSION

Here we present the results of numerical solutions of
Eqs. (1) and (2) and compare them with the above asymptotic
expressions.

We begin by discussing φs, which has been predicted
in general case to be controlled by σ and κih and which
determines at a given κih, the effective inner and outer surface
charge. Let us first investigate the effect of σ on φs at different
values of κih, which is important for calculating electrostatic
interaction energy as


ψ(σ̃)dσ̃.38,39 In all calculations, we

use Z̃ = −1 and vary κih from 0.3 to 10. The calculation results
are shown in Fig. 4. Also included are numerical results for
conventional impermeable walls. We see that φs of membranes
significantly differs from the surface potential of impermeable
plates of the same σ, which confirms the important role of
semi-permeability. In both cases, φs increases with σ, but
the values of φs of membranes are quantitatively and even
qualitatively different. The only exception is the case of large
positive σ, where numerical calculations show that results
obtained at all κih converge to a single curve expected for an
impermeable wall. We have compared these numerical results
with predictions of asymptotic Eq. (21) and can conclude
that the agreement between numerical results is excellent
for all κih. Remarkably, our results show that Eq. (21) is
very accurate when σ ≥ 2.5, i.e., its range of applicability is
much larger than expected initially. At large negative charge,
the surface potential increases with κih. A comparison of
asymptotic Eqs. (20) and (26) with numerical data shows that
they are surprisingly accurate when σ ≤ −2.5. Now we recall
that all asymptotic expressions for the potential of strongly
charged membranes at a given Z̃ scales as

φs ∝ ±lnσ2. (30)

This scaling expression is similar to known for impermeable
surfaces.1 The calculations made with Eq. (30) are included
in Fig. 4, and we conclude that they are in agreement with
exact numerical results. Eqs. (22) and (27), obtained for small
charges, are in good agreement with numerical results when
|σ | ≤ 2. As a side note, here we would like to mention that

FIG. 4. Surface potential as a function of surface charge. Filled symbols
from top to bottom show numerical results obtained at κih = 10, 1, and 0.3.
Solid curves plot predictions of asymptotic solutions given by Eqs. (20)-(22),
(26), and (27). Dashed curves are calculated with Eq. (30). Open symbols
show results for impermeable charged surfaces, σ = 2

√
2 sinh(φs/2), valid at

κih ≫ 1.1

FIG. 5. Contour lines of φs as a function of σ and κih. The solid curve
shows φs = 0 and dashed curves show φs =±0.5, ±1, and ±1.5.

for many applications the differential capacitance, dσ/dφs
is of significant relevance. In our case, for small charges,
we get dσ/dφs = O(1) and for large charges, dσ/dφs
∝ |exp(|Aφs |)|, where A is a numerical constant which depends
on Z̃ .

Fig. 5 represents a contour plot of φs as a function of σ
and κih. We see that for semi-permeable membranes, the curve
of φs = 0 generally does not correspond to σ = 0, as it would
be expected for impermeable surfaces (except some specific
and more complex than the cases considered here19,38). The
(negative) charge of zero surface potential decreases from
σ ≃ −κih at small κih down to σ ≃ −

√
2 in the limit of

large κih, which can be easily obtained by using Eqs. (25)
and (19). We emphasize that as follows from Eqs. (23),
(24), (28), and (29) at φs = 0, the inner effective charge is
equal to σ and the outer effective charge vanishes. In other
words, only inner diffuse layers are formed. This conclusion is
valid for any κih as validated by numerical calculations (now
shown).

We now turn to the midplane potential. The numerical
results for φm as a function of κih obtained at several σ and
predictions of asymptotic theory are given in Fig. 6 and are
again in good agreement. We note that at a given κih, the
midplane potential, φm, monotonously grows with σ, which

FIG. 6. The midplane potential as a function of κih. From top to bottom
σ = 5, 2, 1, 0, −1, −2, and 5. Symbols show numerical results. Solid curves
plot asymptotic results obtained with Eq. (18) for large κih and with Eqs. (26)
and (27) for small κih. Dashed line shows asymptotic behaviour of φm at
κih ≫ 1.
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in particular implies that the midplane potential for neutral
surfaces exceeds that of negatively charged membranes. At
large κih, the midplane potential, φm, diverges as ln(κih)2 as
predicted by Eq. (18), and we see that indeed the curves are
only slightly affected by small parameter ξ (and by σ) in
this equation. The numerical calculations validate asymptotic
results at small κih and confirm that in this limit φm depends
very strongly onσ. In this limit, φm ≃ φs vanishes for a neutral
surface, but it is positive for positively charged membranes and
negative for negatively charged membranes. The concentration
of (positive) small ions in the slit is uniform and equal
to c∞e−φm. Therefore, in the limit of κih ≪ 1 for neutral
surfaces, the concentration of small ions in the gap coincides
with c∞. However, if surfaces are positively charged, this
concentration becomes smaller than c∞, i.e., the gap between
membranes represents a depletion layer of small ions in the
system. Note that in this case, σeff, i ≃ 0 and σeff,o ≃ σ similar
to neutral surfaces. In contrast, in the case of negatively
charged surface, small ions tend to accumulate in the gap, and
their concentration can significantly exceed that in the bulk
electrolyte solution.

IV. IMPLICATIONS OF RESULTS

In this section, we briefly discuss the implications of the
above results to the interaction of semi-permeable membranes
and electro-osmotic flows near them.

A. Interaction of charged semipermeable surfaces

Since membrane potential depends on κih, this gives
rise to a repulsive electrostatic disjoining pressure in the gap
defined as Π ≡ kBT(c∞ + C∞) − ∆p, where ∆p is the force
per unit surface on the membrane. We refer the reader to
the detailed analysis of ∆p given in Ref. 33, which led to
a conclusion that the disjoining pressure can be expressed
through the midplane potential as

Π = kBTc∞e−φm. (31)

We can therefore immediately calculate the disjoining pressure
as a function of κih numerically. The results for different σ
are shown in Fig. 7. As expected, the electrostatic disjoining
pressure always decreases with κih. A startling result is
that Π decreases with the increase of σ. This implies, for
example, that the electrostatic repulsion of positively charged
membranes is always weaker than that of negatively charged
and of even neutral membranes. This somewhat counter-
intuitive result is a consequence of the behavior of φm
discussed above and reflects that small ions accumulate in
the gap at a negative surface charge and strongly deplete when
it is positive.

The typical disjoining pressure curve for the impermeable
surfaces calculated using σ = −1 is included in Fig. 7. It can
be seen that the calculations for semi-permeable membranes of
the same charge give smaller Π at intermediate and especially
small κih. The disjoining pressure does not diverge with a
decrease in κih1,2,40 by approaching the constant values, which
can be easily evaluated using an ideal gas approximation and

FIG. 7. Electrostatic disjoining pressure calculated as a function of κih.
Symbols from top to bottom correspond to σ =−5, −2, −1, 0, 1, 2, and 5.
Solid curve shows the disjoining pressure between impermeable solid walls
with σ =−1. Dashed lines show asymptotic results for large and small κih
calculated with Eq. (31) by using approximate values for φm.

the concept of effective surface chargeΠ/kBTc∞ ∝ 2σeff,i/κih,

Π/kBTc∞ ∝




σ2Z̃, σ ≫ 1

1 − κih + σ√
1 − Z̃

≃ 1, σ ≃ 0

σ2, σ ≪ −1

. (32)

Calculations with these equations are shown in Fig. 7 and are
again in excellent agreement with the exact numerical data up
to κih ≃ 1.

At large κih, the decay of Π is not very sensitive to the
value of σ (see Fig. 7). By using asymptotic expression for
κh ≫ 1, Eq. (18), we derive

Π/kBTc∞ ∝
(
2
√

2eφs/2 + κih
)−2
, (33)

where the exponential term depends weakly on σ, which
slightly affects the results at intermediate κih. The predictions
of Eq. (33) are included in Fig. 7. We can see that this simple
analytical result is in good agreement with numerical data.
One can conclude that to a leading order Π decays as (κih)−2,
which is similar to impermeable surfaces (Gouy-Chapman
solution, e.g., Ref. 41).

B. Electro-osmosis

If a tangent electric field, E, is applied, the body force in
the diffuse layers induces the liquid flow. Now our aim is to
relate the velocity, u, of this electro-osmotic flow to φs and
φm. The liquid flow satisfies Stokes equation

η∆ui,o + ρi,oE = 0, (34)

where η is the dynamic viscosity and ρ = − ϵ
4π∆φ. By applying

the no-slip boundary conditions to Eq. (34), one can relate u
to a potential

ui,o(x) = εEkBT/e
4πη

(φi,o(x) − φs) = u0(φi,o(x) − φs). (35)

Here u0 =
εEkBT /e

4πη represents the Smoluchowski electro-
osmotic velocity, which would be expected for impermeable
surfaces with surface potential φs = 1.
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FIG. 8. Profiles of the electro-osmotic velocity obtained within NLPB theory
(symbols) at κih = 10 and different charges σ =−5; −2; −0.5; 0; 2; 5.

Eq. (35) allows one to calculate electro-osmotic velocity
profiles by using the solution for a potential discussed above.
The calculation results are shown in Fig. 8. A first result
emerging from this plot is that in the outer region, the electro-
osmotic velocity outside of the EDL tends to a constant,
which depends on σ. Its value, u∞ ≃ −φsu0, can be easily
found from Eq. (35). We recall that φs is strongly affected
by semi-permeability of membranes and that it can vanish
or even become positive in the case of weakly negatively
charged membranes. We see, in particular, that surfaces of
σ = −0.5 (where σD

o is also negative) induce an outer electro-
osmotic flow in the direction opposite to the applied field
as it would be for positively charged impermeable surfaces.
This example illustrates that the electro-osmotic velocity in
the outer region is determined by the effective outer charge
density of membranes but not by their intrinsic charge. Inside
the gap, the EDL charge, σD

i , is always positive, so that the
flow is always in the direction of applied field. Its velocity
augments with a decrease in σ from 5 (ion depletion) to −5
(ion enrichment). Finally, we note that the mid-plane (x = 0)
velocity can be expressed as u = u0(φm − φs), and that at small
κih it is negligibly small, but at a large gap it increases as
u ≃ 2u0 ln(κih).

V. CONCLUSION

We have examined theoretically electro-osmotic equi-
libria in a system of two charged semi-permeable membranes
separated by a thin film of salt-free liquid. We have shown
that these equilibria are fully characterized by an effective
surface charge density of membranes we have introduced,
which differs from the real surface charge density, and could
even be of the opposite sign. Moreover, our model has
predicted an alteration of the effective charge density during
the approach. By using NLPB theory, we have obtained
accurate asymptotic formulae for surface and midplane
potentials, which have been used to calculate the effective
membrane charge and to interpret a distribution of ions
in the system. Finally, we have derived explicit formulae
for the disjoining pressure in the gap and electro-osmotic
velocity in the system and have demonstrated that they both
are determined by the effective surface charge density of
membranes.
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