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In this work, we use molecular dynamics and lattice-Boltzmann simulations to study the properties of
charged Janus particles in an electric field. We show that for a relatively small net charge and a thick
electrostatic diffuse layer, mobilities of Janus particles and uniformly charged colloids of the same
net charge are identical. However, for higher charges and thinner diffuse layers, the Janus particles
always show lower electrophoretic mobility. We also demonstrate that the Janus particles align with the
electric field and the angular deviation from the field’s direction is related to their dipole moment. We
show that the latter is affected by the thickness of electrostatic diffuse layer and strongly correlates with
the electrophoretic mobility. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972522]

I. INTRODUCTION

Electrophoresis is both a useful tool and a broad field
of research that has recently met its 200th anniversary.1,2

Since then, much work has been done, and today numerous
applications exist and often are even treated as somewhat
routine.

Until recently, most studies of electrophoresis have
assumed that particles are uniformly charged. In such a sit-
uation, the electrophoretic mobility µ, which relates the trans-
lational velocity vc of a particle of radius R immersed in an
electrolyte solution of concentration CΣ to the electric field
vc = µE, is given by µ (ζ). Here, ζ is the zeta potential, which
for hydrophilic surfaces is simply equal to surface electrostatic
potential determined by the charge density of the particle (but
note that for hydrophobic particles the situation is more com-
plicated).3 The exact µ (ζ) relation depends on the thickness of
the electrostatic diffuse layer (EDL) via a dimensionless quan-
tity κR, where κ is the inverse Debye length, κ = (4πlBCΣ)

1/2

with lB being the Bjerrum length, and CΣ for a 1:1 electrolyte
is the total concentration of ions in the system. The dimension-
less mobility, µ̃ = 6πηlBµ/e, where η stands for the dynamic
viscosity of the solvent and e is the elementary charge, can be
expressed as

µ̃ = f ζ̃ , (1)

with dimensionless zeta potential ζ̃ = ζe/kBT (where kBT
denotes the thermal energy), which can be deduced from the
measured µ̃ if f is known. Earlier models have predicted
f = 1 in the Hückel thick EDL limit4 (κR � 1) and f = 3/2 in
the Smoluchowski thin EDL limit5 (κR � 1). To calculate f
depending on κR, the majority of previous works have used the
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classical mean-field solution by O’Brien and White,6 which is
often referred to as the Standard Electrokinetic Model (SEM).
This theory has played a major role in the interpretation of
electrophoretic measurements over several decades.

The assumption that particles are uniformly charged
becomes unrealistic for such colloids as Janus particles
(JPs),7,8 which have opened a new field of investigation with
both fundamental and practical perspectives. Such JPs can be
used for optical nanoprobes,9 E-paper display technology,10

or cargo transport.11,12 Their suspensions demonstrate a rich
phase behavior ranging from cross-linked gels up to ferro-
electric crystals.13 In the case of JPs, other factors like sur-
face charge (or zeta potential) heterogeneity and anisotropy
come into play, so they should become a very important
consideration in electrophoresis.

The body of theoretical and experimental work inves-
tigating electrophoretic properties of this class of particles
is much less than that for uniform objects, and quantitative
understanding of electrophoresis of JPs is still challenging,
despite some recent advances. Previous theoretical work14 has
shown that in the thin EDL limit the electrophoretic mobility
of JPs is well represented by the Smoluchowski model,5 i.e.,
it remains governed by the average zeta potential, while the
dipole moment of JPs only affects the orientation of particles
relative to the external field. A recent numerical study15 per-
formed under the assumptions of SEM has shown that at the
same averaged surface potential, the mobility of JPs in a spher-
ical cavity of arbitrary size is generally smaller than that of a
uniformly charged particle and the difference becomes more
pronounced with the increase in non-uniformity. Molecular
dynamics simulations have also concluded that charge inho-
mogeneities could reduce the diffusion coefficient of nanopar-
ticles in nanopores.16 Nevertheless, the electrophoretic prop-
erties of JPs remain largely unexplored outside the range of
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applicability of SEM, when one has to consider the finite
size of ions and particles’ own thermal wobble that disturbs
the preferred alignment to the external field. Furthermore,
we would like to point out that SEM assumes the constant
surface potential while often it is the charge density that is
kept constant. A recent study17 has pointed it out for the case
of uniformly charged particles, but we are unaware of any
previous work that has applied a constant charge condition
for JPs.

In this paper, we use a hybrid Molecular Dynamics (MD)-
Lattice Boltzmann (LB) simulation and a SEM-based mean-
field approach to study the electrophoresis of a single JP. We
are interested in effects arising from the variations of surface
charge which occur both on the scale of particle radius and over
distances comparable to the Debye length, so that we focus
on the intermediate values of κR=O(1), where quantitative
understanding of electrophoresis remains especially challeng-
ing. Our results show that at low total charges, JPs can be
characterized by an area-averaged surface charge, but at higher
charges and κR, their electrophoretic mobility is reduced,
being strongly affected by non-uniformity and anisotropy of
surface charge.

Our paper is organized as follows. In Section II, we
describe our methods and model of JPs. In Section III, we
present our data on electrophoretic mobility and rotational
dynamics for JPs of different total charges and in vari-
ous screening regimes. Our conclusions are summarized in
Section IV.

II. SIMULATION AND NUMERICAL METHODS

For the simulation of the dynamics of charged JPs, we
use the hybrid Lattice-Boltzmann (LB)-Molecular dynam-
ics (MD) method combined with the primitive model of the
electrolyte.18 All MD-LB simulations are performed using
ESPResSo.19,20 We model all the charged species and the parti-
cle surface elements explicitly as MD beads, while the medium
is modelled as a viscous fluid of mass density ρ and dynamic
viscosity η at the level of the LB method. It is treated as a
dielectric continuum characterized by the Bjerrum length lB.

In our model, the MD beads—small ions in solution and
surface beads of the colloid—interact via the Weeks-Chandler-
Anderson (WCA) potential

UWCA(r) =



4ε ij

((
σij

r

)12
−

(
σij

r

)6
+ 1

4

)
, r < 21/6σij,

0, r ≥ 21/6σij

(2)

and the Coulomb potential

UC(r) = lBkBT
zizj

r
. (3)

Here, lB is the Bjerrum length, lB = e2/(4πε0εkBT ), and zi,
zj are ion valencies; ε0 and ε being the dielectric permittivity
of vacuum and dielectric constant of water, respectively. The
bead size, σ, sets the unit length in our simulations and the
characteristic energy scale is ε ij = 1. r is the distance between
two MD beads. To facilitate a comparison to the mean-field
theory, we choose σij = 2−1/6 ' 0.89σ so that σWCA = 1.0σ
(Figure 2).

FIG. 1. A snapshot of the simulation system: the “raspberry” colloid particle
is surrounded by cations (red) and anions (blue). The uncharged sector is
shown in white. The solvent grid is not shown.

For the JP itself, we use the modified “raspberry” model
of a spherical colloid particle.21–25 The “raspberry” (Figure 1)
is a construct made of a single central MD particle with both
translational and rotational degrees of freedom and two spher-
ical shells around it made of “virtual” MD beads, whose
positions are derived relatively to the central particle and
not from the integration of their equations of motion. The
inner shell has a radius of Ri =R−σWCA = 3.0σ and holds the
charged beads. The outer shell’s radius is simply R = 4.0σ:
it does not interact with other MD particles either via WCA
or Coulomb potentials but only with the LB fluid, and thus
serves to define the colloid’s hydrodynamic radius. Using
two shells shifted against one another is advantageous for
tuning both “electrostatic” and “hydrodynamic” radii to the
same value which allows for a more convenient comparison
of our results to the mean-field theory predictions. The cou-
pling between the LB and MD subsystems is realized via
dissipative interactions as introduced in Ref. 18. The viscous
friction term, given by Ff = −Γ

(
us − uf

)
, where us, uf are

velocities of the solute beads and the solvent, respectively,
acts on the solute particles–microions and colloid surface
beads. An opposite force is applied to the solvent to ensure
momentum conservation, and Gaussian white noise FR with
zero mean is added that satisfies the fluctuation-dissipation
theorem through

〈
Fα (t) Fβ (t ′)

〉
= 2δ (t − t ′) 2δαβkBT Γ. This

coupling mechanism also works as a thermostat, keeping the
temperatures of MD particles and the LB fluid the same.
We choose the simulation units as kBT/ε ij = 1, ρ = 1.0σ−3,
η = 3.0

√
mε ijσ

−2, lB = 1.0σ, and LB lattice spacing a = 1σ.
In comparison to the original “raspberry” model,21,26 we here
introduce two different friction coefficients for the microions
and the colloid surface beads: for the surface beads Γ is set
to 20, at which point the dependence of hydrodynamic radius
on Γ is saturated enough to emulate no-slip boundary con-
dition at the hydrophilic surface,24 while for microions Γ
is set to 2 thus ensuring that the ionic atmosphere is fairly
mobile compared to the colloid. The resulting reduced diffu-
sion constant for microions was 6πηlBD/kBT ' 14 which has
been calculated from system parameters following Ahlrichs
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and Dünweg,18 and verified in a simulation via diffusivity
measurements.

The system including the particle, electrolyte, and fluid
was modeled in 3D periodic boundary conditions in a cubic
box with L = 40.0σ, giving the R/L = 0.1 and the colloid
volume fraction of 0.41%. The number of monovalent ions N
in the simulation box was set by the number of background
salt ions and counterions to the colloid, N = 2C0L3 + |Q/e|,
where C0 is the salt concentration and Q is the colloid charge
so that the system was overall electroneutral. The electrostatic
interactions were evaluated using P3M implementation of the
Ewald summation technique.27 We describe the ionic strength
and the screening conditions in the suspension by κR, where
κ = (4πlBN/L3)

1/2
, with the total number of the (monova-

lent) ions in the simulation box N, and we vary κR from 0.5
to 3.0 through the concentration of the salt ions, which is typi-
cally 0.001− 0.025σ−3. The external field E was modeled by a
uniform force acting on each charged MD bead, and in all sim-
ulations we use E = 0.2kBT/σe. This field strength belongs
to the linear response regime for our systems, which is con-
firmed by the linear dependence of the velocity on the field
strength, i.e., constant mobility. At the same time, the field is
sufficiently large to give a noticeable particle velocity and to
facilitate the mobility measurements. The ionic cloud at this
field value is not significantly perturbed, while the external
field E is less than the potential drop over the electrostatic dif-
fuse layer κζ . The chosen field strength is also suitable to study
the interplay between the JPs’ thermal wobble and electrostatic
torque, which will be described in detail in Sec. III B.

The area fraction of the charged surface, φ (Figure 2), has
been varied from 0.25 to 1, where the latter corresponds to a
uniformly charged particle, by keeping the net charge of the
colloid Q constant. The charged patch was always a spherical
segment of a given height 2φR (Figure 2), so all the JPs had an

FIG. 2. Sketch of the model JP with the radius of inner shell Ri, the effective
cutoff radius for the WCA potential σWCA, and the radius of the outer shell
R = Ri + σWCA (black dots) serving as the effective hydrodynamic radius.
The charged area of the fraction φ is shown by filled red circles. Open circles
indicate an uncharged region. Blue circles mark the closest distance at which
the ions do not experience any WCA repulsion from the colloid beads.

axial symmetry of charge distribution. We should stress that all
the JPs had the same net charge and the same average charge
density 〈q〉 = Q/4πR2, but different local charge densities
q = 〈q〉/φ of their “patches.” Further in the text, we use the
scaled charge Ẑ ≡ Q lB

eR , which we vary from 2.0 to 12.5 by
changing Q via the charges of surface beads.

We also employ a direct numerical solution of the elec-
trophoretic problem that we describe in Appendix A. We the
reader for a more in-depth look on this system in the original
publication.28 We use such an approach for precise control over
the charge distribution around the colloid, and accordingly we
implement it to construct JPs in exactly the same manner as
in the MD-LB model, i.e., by distributing a fixed charge over
fraction of the surface, φ.

III. RESULTS AND DISCUSSION
A. Electrophoretic mobility

We first investigated the effect of charge heterogeneity
on the electrophoretic mobility. Figure 3 shows the simula-
tion results for electrophoretic mobility as a function of Ẑ
obtained for κR = 1.0 at different fractions of charged area,
φ. Also included are the numerical mean-field results and pre-
dictions of the Hückel theory µ̃ = Ẑ/ (1 + κR).4 We see that
when the particle is uniformly charged (φ= 1), at relatively
small charges the mobility is nearly equal to, while at high
charges it is smaller than that predicted in the Hückel limit.
This confirms that the electrophoretic mobility of a uniformly
charged particle is proportional to its charge only in the weak
charge regime.6,17 Note that the simulation results for a uni-
formly charged particle are in excellent agreement with the
predictions of the SEM, which demonstrates the predictive
power of our simulation model. Another result emerging from
Figure 3 is that in the low Ẑ regime, simulation data at φ = 0.50
(a “balanced” charge distribution) and φ = 0.25 (highly con-
centrated charge on a relatively small surface patch) practically
coincide with those obtained for the uniformly charged par-
ticle. This indicates that the electrophoretic mobility in this
regime is fully determined by the area-averaged charge (or zeta
potential) in agreement with the SEM for uniformly charged

FIG. 3. Electrophoretic mobility of Janus particles withφ = 1.00 (open trian-
gles), 0.50 (filled squares), and 0.25 (filled circles) as a function of net charge
at κR = 1.0. The solid curve shows the predictions of SEM, dashed curves
represent numerical mean-field calculations for JPs, the dotted line shows the
Hückel limit solution. The color of the curves matches the color of the symbols
for the corresponding charge distribution.
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particles, as it is commonly assumed. In the high charge
regime, the electrophoretic mobility of JPs is smaller than that
of a uniformly charged particle, so that the SEM for the uni-
formly charged colloid significantly overestimates simulation
results. This means that the mobility is no longer determined
by the area-averaged charge alone. Our observation—that
the electrophoretic mobility of JPs decreases at high charges
—is likely related to the non-linear relation between µ̃ and Ẑ .
Since all the JPs we study bear the same net charge, their local
charge densities vary significantly. Hence in the regime of high
charges, the mobilities of JPs divert from the linear relation
even more than it might be expected for the uniformly charged
particles.

The decrease in the electrophoretic mobility of JPs is also
captured by our SEM calculations. We remark, however, that
our numerical solutions show practically no difference in elec-
trophoretic mobilities for particles of φ = 0.50 and 0.25, but
the deviations of simulation data from the SEM are getting
larger when φ = 0.25. We see that the SEM and primitive
model simulation results for JPs practically coincide at φ = 0.5
(except for the highest tested Ẑ), but at φ = 0.25 the simula-
tion data deviate from the numerical solution towards smaller
mobilities. We can speculate that numerical solutions devi-
ate from the MD-LB simulations (at high enough charges or
strong enough screening) because of the limited resolution of
the lattice that the mean-field solver we use provides. Indeed,
when κR grows, the characteristic thickness of the electrostatic
diffuse layer decreases, and with high charges, the potential
grows too rapidly in the close vicinity to the charged surface.
It is well-known29,30 that the Poisson-Boltzmann equation
often may not grasp this rapid increase properly, thus decreas-
ing the accuracy of the results. The fact that our MD-LB results
deviate even more from the numerical solution in case of
φ = 0.25 is consistent with this suggestion, since the local
density is fairly high in this case to be precisely resolved by
the lattice-based solver.

It is instructive now to focus on the role of κR. Figure 4
shows numerical and simulation results obtained at low,
Ẑ = 2.5, and high, Ẑ = 9.6, values of surface charge. A general
conclusion from this plot is that in this range of parameters, the
electrophoretic mobility decays with κR, but the influence of
charge non-uniformity is different for low and high net surface
charges. In the case of small charges, the mobility of JPs does
not significantly differ from that of uniformly charged colloids,
and the simulation data are in agreement with the mean-field
theory results. One can therefore conclude that a simple Hückel
model can safely be used to analyze the mobility data in the

FIG. 4. Electrophoretic mobility of particles as a function of κR at high
Ẑ = 9.6 (top datasets) and low Ẑ = 2.5 (bottom datasets) charge regimes.
Symbols show simulation data obtained atφ = 1.00 (triangles), 0.50 (squares),
and 0.25 (circles). The solid curve shows predictions of SEM, dashed curves
represent numerical results for JPs, the dotted line shows the Hückel limiting
solution for uniformly charged colloid. The color of the curves matches the
color of the symbols for the corresponding charge distribution.

studied range of κR. In the high charge regime, we see
that the simulation data for a uniformly charged particle are
well fitted by the SEM and are well below the Hückel solu-
tion. For JPs the numerical solution predicts slightly lower
electrophoretic mobility, actually the same for φ= 0.50 and
0.25. The simulation data deviate from these mean-field solu-
tions towards the smaller mobility values, especially at larger
κR. We also note that the discrepancy is larger for JPs of
φ = 0.25.

B. Orientation and dipole moment

We present the counterion density maps near particles of
different φ in Figure 5. This plot demonstrates that JP dipole
moments are oriented along the external field. Note that our
density maps account for the JPs own wobble, so that the ther-
mal motion perturbs the preferred orientation of the particle,
which means that counter-ion cloud also experiences orien-
tational fluctuations. We also remark that the accumulation
of counterions near JPs is stronger compared to a uniformly
charged colloid, and increases with a decrease in φ. This obvi-
ously reflects the fact that at the same Ẑ the local charge
density of the charged area is higher at smaller φ. These results
indicate a non-negligible dipole moment of JPs, a variation of
which should correlate with the decrement of electrophoretic
mobility values, as both are caused by the charge screening.
Motivated by these observations below we studied the orien-
tational torque of JPs in the electric field and its relation to the
mobility.

FIG. 5. 2D radial axisymmetric distri-
bution maps of counter-ions around par-
ticles of φ = 1 (a), 0.50 (b), 0.25 (c)
calculated at Ẑ = 9.6 and κR = 1.0.
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The JP’s rotational dynamics can be characterized by
the mean-squared angular displacement

〈
α2 (τ)

〉
of the par-

ticle’s dipole moment within time τ. Our analytical solution is
described in Appendix B and can be presented as

∞∑
n=1

(−1)n+1

〈
α2n

〉
(2n − 1)!τ→∞

≡ 〈α〉Σ =
kBT
Ed

, (4)

where d is the dipole moment, which can be deduced from
〈α〉Σ, calculated by using the simulation data on α as a function
of time τ.

In Figure 6, we plot the dipole moment of two JPs
as a function of their net charge Ẑ . We note that at
low Ẑ , the measured d coincides with the dipole moment
of the unscreened particle, d0, which can be defined as
d0 = (1 − φ) R2Ẑe/lB. However, at high Ẑ , it is considerably
smaller, which immediately suggests that counterions con-
tribute to its effective value, likewise they contribute to the
effective zeta potential and to the decrement of electrophoretic
mobility.

To test this assumption, we attempted to predict the values
of electrophoretic mobility from the measured dipole moment.
We introduce an effective charge as Ẑeff = Ẑd/d0 and then use
it to compute the mobility using the Hückel limiting law for
low Ẑ and κR,

µ̃ =
Ẑ

1 + κR
. (5)

In Figure 7, we plot the mobilities calculated at φ = 0.50 and
0.25 and compare them with data from Figure 3. We see that
for φ= 0.50 (Figure 7(a)), the two sets of data agree with each
other quite well, so that the measurements of dipole moments
can be used to evaluate the decrement of electrophoretic mobil-
ity of JPs. However, for φ= 0.25 (Figure 7(b)), the effec-
tive charge approach underestimates the mobility at high Ẑ .
Since even at the highest local charge density, the hydro-
dynamic radius (calculated with Eq. (B11) of Appendix B)
remains the same within a statistical error, such a discrep-
ancy cannot be related to counterion condensation. So, it is
likely that the concept of single effective charge becomes
unsuitable when the surface charge anisotropy is getting very
large.

FIG. 6. Dipole moment of JPs withφ = 0.25 (circles) and 0.50 (squares) mea-
sured from their rotational “wobble” at κR= 1. Dashed-dotted lines show
dipole moment of unscreened particles. Dashed curves are drawn only to
guide the eye.

FIG. 7. Electrophoretic mobility at κR = 1 calculated from dipole moments
of JPs with φ = 0.50 (a) and 0.25 (b) as a function of net charge (empty
symbols). The same data as in Figure 3 are shown by blue squares and red
circles, respectively. Dotted lines plot the Hückel limit solution (5), solid
curves are drawn only to guide the eye.

IV. CONCLUSIONS

We have studied the electrophoretic mobility of JPs and
have shown that it depends both on their net charge and charge
distribution. Namely, less homogeneous charge distributions
generally lead to lower mobilities, which is consistent with
previous observations made for different systems.31–33 The
decrease in mobility as compared to that of uniformly charged
particles is negligibly small at low particle net charges and
small κR. In this case, the electrophoretic mobility can be
related to the area-averaged charge (or zeta potential) thought
the SEM, as it is commonly assumed. The deviations from the
SEM are becoming pronounced when the net charge and κR
increase. Where the mobility is significantly affected by charge
heterogeneity, the mean-field predictions for JPs overestimate
the mobility and should be used with care. Reversely, the zeta
potential or surface charge extracted from the mobility data in
the regime κR ≈ 1 for nanoparticles and molecules with non-
uniform surface charge distribution with SEM are expected
to underestimate the particle net charge. We have also shown
that JPs’ dipole moments align to electric field, and that their
orientation and dipole moment are strongly correlated with
the electrophoretic mobility and can be used for predicting the
mobility decrease.
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APPENDIX A: NUMERICAL SOLUTION
OF MEAN-FIELD EQUATIONS

The algorithm we apply is a solver for the following
Poisson-Boltzmann equation and a coupled set of Nernst-
Plank and Stokes equations:

0 = ∇2ψ +
1
ε

e
∑

i

zici, (A1)

0 = ∇ ·

(
Di∇ci +

Di

kBT
ezi (∇ψ) ci − vci

)
, (A2)

0 = −∇p + η∇2v − e (∇ψ)
∑

i

zici, (A3)

0 = ∇ · v, (A4)

where zi, ci, and Di are valencies, concentrations, and diffusion
constants of charged species i, ψ is the electrostatic potential,
p is the pressure, and v is the velocity of liquid in the fixed
colloid’s reference frame. In this method,34 instead of solv-
ing a set of partial differential equations for electrostatics, the
problem is reformulated in terms of electric field rather than
potential to obtain a free energy in the form of the following
functional:

F =
∫

V
fdV , (A5)

f =
1
2

E2 +
∑

i

ci ln ci − ψ *
,
∇ · E−

∑
i

ci
+
-
−

∑
i

µi

(
ci −

Ni

V

)
,

where Ni are total numbers of charged species i, and V is the
system volume. The minimum of this functional corresponds
to the solution of a related Poisson-Boltzmann equation. Fur-
ther discretization allows one to implement a version of this
solver with charged species serving both as ions in solution
and the surface charged beads of a colloid, in a sense much
like the MD implementation, albeit a lattice one. In order to
minimize the free energy functional, the discrete charges are
moved around the lattice. The solution is used as an input to
the set of linearised Nernst-Plank and Stokes equations, and
this procedure is repeated iteratively until the solution for the
fluid velocity in the frame of the colloid converges.

APPENDIX B: ORIENTATIONAL DYNAMICS
OF A JANUS PARTICLE

For the case of a constant and uniform electric field E, a
dipole orientation satisfies the Boltzmann distribution,

W = AeEd cosα/kBT , (B1)

where A= 4π kBT
Ed sinh Ed

kBT is a normalisation constant. The
average value of the dipole moment component in the direction
of the field can be then calculated as

d〈cos α〉 =
∫ 2π

0

∫ π

0
W (α)d cos α sin αdαdϕ

= d

(
coth

Ed
kBT

−
kBT
Ed

)
. (B2)

In strong fields such that Ed
kBT � 1, the first term in the bracket

turns unity and we have

d〈cos α〉E→∞ = d ·

(
1 −

kBT
Ed

)
, (B3)

whence, since α is small, we find

〈α2〉 =
kBT
Ed

. (B4)

We can write a 1D Langevin equation for the colloid
orientation angle with respect to the field as

I α̈ = −Ed sin α − ζRα̇ + Trand(t). (B5)

Here I stands for the colloid’s moment of inertia, ζR = 8πηR3,
and dot and double dot denote the first and second time deriva-
tives, respectively. Multiplying (B5) by α, expanding sin (α)
in a series, and also using that d (αα̇) /dt ≡ α̇2 + αα̈, we find

I
d
dt

(αα̇) − I α̇2 = −Ed
∞∑

n=1

(−1)n+1 α2n

(2n)!
− ζRα̇α + Trandα,

(B6)
which after taking the ensemble average of both parts becomes

I
2

d2

dt2

〈
α2

〉
+
ζR

2
d
dt

〈
α2

〉
+ Ed

∞∑
n=1

(−1)n+1

〈
α2n

〉
(2n)!

− kBT = 0.

(B7)
Here we have used the equipartition theorem, T rand symmetry,
and the fact that 〈αα̇〉 = 1

2
d
dt

〈
α2

〉
. In the limit α → 0, we can

further simplify Eq. (B7) by omitting higher order terms and
using A =

〈
α2

〉
− kBT/Ed,

Ä +
ζR

I
Ȧ +

2Ed
I
A = 0. (B8)

This is a well-known differential equation for a damped oscil-
lator,35 in our case—over-damped as the damping parameter
ζR/
√

8IEd is always larger than 1. Therefore, we can write the
solution in the form ofA = Ae−λt , where λ is the smaller root of
an auxiliary quadratic equation (we drop one term with large
λ as it decays too fast and is negligible). Finally, we use the
condition

〈
α2

〉
t=0
= 0 to get〈
α2

〉
(τ) =

kBT
Ed

(
1 − e−λτ

)
. (B9)

This equation describes the evolution of the JP’s orientation
relative to the external field and at t > 1/λ the result agrees
with Eq. (B4) derived from the statistical viewpoint. Substi-
tuting the solution for

〈
α2

〉
in Equation (B7), we see that both

derivatives vanish when t → ∞ and thus we can find the full
solution in the equilibrium distribution without the limitation
α → 0,

∞∑
n=1

(−1)n+1

〈
α2n

〉
(2n)! τ→∞

≡ 〈α〉Σ =
kBT
Ed

. (B10)

Since λ is a function of both ζR and I, we can rewrite the
solution of auxiliary equation in terms of R and omit the λ2

term

R ' (
Ed

4πηλ
)
1/3

. (B11)
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Thus, the same 〈α〉 data allows one to calculate the hydrody-
namic radius of the particle.
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