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Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip,
which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here
we discuss how the dissipation in the gas phase of textures modifies their friction properties. We propose an
operator method, which allows us to map the flow in the gas subphase to a local slip boundary condition at the
liquid-gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying
topography, and can be immediately used to evaluate an effective slip of the texture. Besides superlubricating
Cassie surfaces, our approach is valid for rough surfaces impregnated by a low-viscosity “lubricant,” and even
for Wenzel textures, where a liquid follows the surface relief. These results provide a framework for the rational

design of textured surfaces for numerous applications.
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I. INTRODUCTION

Superhydrophobic (SH) textures have raised considerable
interest and motivated numerous studies during the past
decade. Such surfaces in the Cassie state, i.e., where the texture
is filled with gas, can induce exceptional wetting properties [1]
and, due to their superlubricating potential [2-5], are also
extremely important in the context of fluid dynamics. To
quantify the drag reduction associated with two-component
(e.g., gas and solid) SH surfaces with given area fractions, it is
convenient to construct the effective slip boundary condition
(on the scale larger than the pattern characteristic length) for
the averaged velocity field. This condition is applied at the
imaginary smooth homogeneous surface [6,7], which mimics
the actual one and fully characterizes the flow at the real
surface and is generally a tensor [8,9]. Once eigenvalues of the
slip-length tensor, which depend on both the hydrodynamic
boundary condition at the solid-liquid interface and viscous
dissipation in the gas phase, are determined, they can be used
to solve complex hydrodynamic problems without tedious
calculations. A key difficulty is that there is no general
analytical theory that relates this dissipation to the relief
of the texture, so that prior work often neglected it, by
imposing idealized shear-free boundary conditions at the gas
sectors [10-12].

To account for a dissipation within the gas subphase, it is
necessary to solve Stokes equations by applying conditions,

du ou
z=0:u=ug,M8—;=Mg azg’, (1)
where u and p are the velocity and the dynamic viscosity of the
liquid; w, and p, are those of the gas; and u; = (u,,u,) is the
tangential velocity. Although this problem has been resolved
numerically for rectangular grooves [13,14], such a strategy
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appears rather hopeless in the context of exact analytical
results, especially for complex configurations, which are
typical for many applications. An elegant semianalytical
approach to overcome this problem proposed recently [15]
remains approximate and does not take into account the total
dissipation in the gas subphase.

To bypass this problem, it is advantageous to replace the
two-phase approach with a single-phase problem with spatially
dependent partial slip boundary condition [2,16], which takes
a form

ou,

z=0: u; — b(x,y) =0, (2
0z

where b(x,y) is the local slip length at the gas areas, which is
normally assumed to conform the texture relief e according to
predictions of the “gas cushion” model [17],

b (xy) ~ kY Eexy), 3)
8

where prefactors k™7 =1 can reduce to 1/4 if the net
gas flux becomes zero (due to end walls) [18]. Such an
approach, justified for a continuous gas layer at a homogeneous
surface [17] and later for shallow grooves [18], is by no means
obvious for an arbitrary texture, where the gas subphase can
be deep and strongly confined. In such a situation, it remains
largely unknown if the gas flow can be indeed excluded from
the analysis being equivalently replaced by b(x,y), and how
(and whether) this local slip profile is uniquely related to the
relief of the texture.

In this article, we propose a general theoretical method,
which allows us to generalize the gas cushion model for any
one-dimensional (1D) and 2D two-phase SH textures in the
Cassie state, or rough surfaces impregnated by a low-viscosity
“lubricant.” We also show that our approach can be applied
even for textures in the one-phase Wenzel state, where the
liquid follows the topological variations of the texture.
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II. THEORY
A. General consideration

To illustrate our approach, we consider a 1D SH surface of
period L, and assume the interface to be flat with no meniscus
curvature (see Fig. 1). Such an idealized situation, which
neglects an additional mechanism for a dissipation due to a
meniscus [19,20], has been considered in most previous pub-
lications [6,11,21] and observed in recent experiments [22].
We then impose no-slip at the solid area, i.e., neglect slippage
of liquid [23-26] and gas [27] past the hydrophobic surface,
which is justified provided the nanometric slip is small
compared to parameters of the texture. No further assumptions
are made, aside from distinguishing between longitudinal and
transverse gas flow, with k¥ = 1 and k¥ = 1/4, to address the
most anisotropic case.

The linearity of Stokes equations implies that the boundary
condition at the liquid-gas interface for longitudinal and
transverse directions can be formulated as

oug,

=0:
¢ 0z

— P [u, ] =0, “4)
where we introduced the linear operator P*” that belongs
to a general class of Dirichlet-to-Neumann (DtN) ones [28].
The meaning of Eq. (4) becomes clear if we project both
the velocity and its normal derivative on a grid {y;}"_, at the
liquid-gas interface. Then the operator becomes a matrix P;;
that relates the shear rate at a given point i with velocities in
every other point of the interface j = 1, ..., N (the condition
is essentially nonlocal). Unlike the local slip length, the
operator depends only on the texture relief, but not on the
solution outside. It is universal and, once calculated for a given
topography, can be applied for any geometry of the outside flow
and any viscosity ratio. Then, in view of Eq. (1), the nonlocal
boundary condition for fluid flow past a SH surface reads

ey (vi,0) B
% — =Y Pu\(y,0)=0, i=1,....N.
Z Mg o
)

This boundary condition allows one to solve the Stokes
equations for the liquid phase separately and to determine

L 3

FIG. 1. (Color online) Sketch of the typical 1D SH surface
represented by rectangular grooves rigorously studied here. However,
some of our conclusions are general and apply for any 1D and 2D
textured surfaces—pillars, holes, and lamellae.
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the local slip length by using Eq. (2):

poi(y) = L L0 ©)
g PO uy y]

We recall that the local slip length may depend not only on the
texture relief, but also on the state of the liquid phase, which
could affect the velocity u, ,. However, for a single surface
that we consider here, the local slip length is uniquely related
to the texture relief and the generalization of the gas cushion
model can be constructed. For confined configurations (e.g.,
flow in a thin channel), the local slip length will, of course, be
a property of the whole system, but note that the P* operators
will remain exactly the same.

To calculate the matrices Pi;’y , we should solve the problem
in the gas phase and extract the normal derivative of the
solution either analytically or numerically. In this paper, we
rigorously calculate them for a rectangular groove using a
Fourier method. For an arbitrary 1D geometry, P> can be
expressed in the form of a boundary integral operator involving
Green’s functions for the Stokes flow [29]. As a side note, we
remark that it can be similarly constructed for 2D surfaces, but
of course by using Green’s functions for 3D Stokes flow [29].
Note, however, that one does not expect the main physical
picture to be altered in these (more technically challenging)
situations, and we leave the study of these complex geometries
for a future work.

B. Periodic rectangular grooves

For an initial application of our approach, we consider
now periodic rectangular grooves of width § and depth e. The
fraction of gas area is then ¢ = §/L. In this particular case,
the problem inside the groove can be solved using the Fourier
method. For the longitudinal flow, this yields an analytical
expression for the DtN matrix,

1
Pi; = E(FimHmlef])’

Fy = cos(k,yi/8), Ty = k;, coth(k)e/8)8,  (7)

where k' = (2m — 1) and §,,; is the Kronecker delta. Note
that the matrix combination inside the brackets in Eq. (7)
depends only on the aspect ratio e¢/5 (and the spatial grid
used). The same is true for the transverse direction, although
the matrix Pli: can be obtained only semianalytically (see
Appendix A).

Having calculated Pl);y , we can then use the Fourier method
to solve the Stokes equations for liquid with the nonlocal
boundary condition given by Eq. (5) (see Appendix B for
details). We stress again that the resulting problem is not
affected by the texture relief or the method used to find P;;”.
From the liquid velocity field, we can extract both the local
slip length profile b, ,(y) [by using Eq. (6)] and the effective
slip tensor b!ffj‘ (by averaging over texture period), as will be
discussed below.

III. RESULTS AND DISCUSSION

A. Local slip length

Figures 2(a) and 2(b) show profiles of the longitudinal,
b*(y), and transverse, b (y), local slip lengths at fixed groove
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FIG. 2. (a)Longitudinal and (b) transverse local slip lengths com-
puted with ¢ = 0.75, u/pe = 50. Dashed lines show the predictions
of Eq. (3).

width 6/L = 0.75 and aspect ratio e¢/§ varying from 0.1 to
infinity. The calculations are made using u/u, = 50, which
corresponds to a SH texture filled with gas. It can be seen
that for shallow grooves, e/§ < 1, local slip lengths b*¥(y)
saturate to constant values predicted by Eq. (3) at the central
part of the gas sector, but vanish at the edge of the groove.
Thus the local slip profiles can be roughly approximated by a
trapezoid [30].

For deeper grooves, the local slip curves look parabolic-
like. At e/§ > 1, they converge to a single curve suggesting
that b*7(y) of deep grooves are controlled by the value of §
only, being independent on a texture depth. This result does
not support Eq. (3), which predicts that b*7(y) are growing
infinitely with e, and indicates that for large e, the dissipation
at the edge of the grooves becomes crucial.

Indeed, the data presented in Figs. 2(a) and 2(b) suggest that
near the edge of the groove, b*? always augment from zero by
having the same slope (which has not been taken into account
in recent work [15]). This slope can be found by asymptotic
analysis in the vicinity of the grooves edge. Motivated by an
earlier single-phase analysis [31,32], we can now construct the
asymptotic solution for the two-phase flow near the edge by
using polar coordinates (r,0) [see Fig. 3(a) and Appendix C
for details].

Close to the edge, when r < 1, the general solution of
the Stokes equations implies a power-law dependence of
velocities on the distance, u o r*: u, = r*asin(A0), ug, =
r*[c sin(A@) + h cos(A0)]. Similar arguments are valid for the
transverse configuration. This yields a linear dependence for
the slip lengths, b = r8b;yy()\). The exponent A can be
found from the boundary conditions at the solid walls and
the liquid-gas interface.

For large 1/ 1,, we obtain (see Appendix C)

bl =21/ g, by, = 1/(2u). ®)

The above expressions for b and b/, give upper and lower
bounds on slopes among all textures, which are attained when
the main flow is tangent or normal to the border of the gas area.
Therefore, b* is constrained by §1u/1t,, and b” by S /411, [see
Figs. 3(b)-3(d)], so that the local slip profiles for arbitrary
textures should be similar to those shown in Fig. 2, although
the absolute value of the maximum might differ.
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FIG. 3. (Color online) (a) Polar coordinates (side view) used to
evaluate the flow near the edge of the groove, and illustration (top
view) of the local slip length behavior at the edge of 2D (b) pillars,
(c) hollows, and (d) channels.

It is natural now to propose a generalization of Eq. (3) for
a SH surface, where we scale with § instead of L,

bUY(y) = 8= B*V(e/8.y/6). ©)
273

Here we ascribe rescaled dimensionless local slip lengths, 857,
which become linear in ¢/6 when e/§ is small, and we recover
Eq. (3). At the other extreme, when e/4 is large, B saturate
to provide an upper limit for local slip lengths.

To verify this ansatz in Figs. 4(a) and 4(b), we plot %~
as a function of y/§ at different ¢ and e¢/§. Here we use a
viscosity ratio of the Cassie state as in Figs. 2(a) and 2(b).
Also included are results calculated for the Wenzel state, and
/g = 1. The results are somewhat remarkable. We see that
for relatively deep grooves, e/§ > 1, B profiles computed
for different /g, /8, and even ¢ practically converge into
a single curve [33].
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FIG. 4. (Color online) Rescaled (a) longitudinal and (b) trans-
verse local slip length for deep and shallow grooves. Solid and dotted
curves correspond to the Cassie, ju/p, = 50, and Wenzel, u/u, =1,
states at ¢ = 0.1,0.5,0.9 (these curves coincide for shallow grooves
and are nearly overlapping for deep grooves). Dash-dotted lines show
asymptotic solutions near the edges of the groove.
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FIG. 5. (Color online) (a),(b) Longitudinal and (c),(d) transverse
effective slip lengths for textures with (a),(c) shallow and (b),(d)
deep grooves. From top to bottom, u/u, = 50,5,1. Exact theoretical
results are shown by circles; analytical results [Eq. (11)] with local
slip given by Eq. (12) are plotted by solid curves. Filled squares show
earlier data for perfect slip [10,12]; filled circles show earlier data for
the Wentzel state [31].

For shallow grooves (e/§ < 0.1 for a longitudinal and
e/§ < 0.25 for a transverse case), the * profiles depend
only on the depth of the groove, and can be approximated by
trapezoids with the central region of a constant slip given by
Eq. (3), and linear edge regions where the local slip length is
described by our asymptotic model.

B. Effective slip length

We finally turn to the effective slip lengths, which can
be found by averaging the obtained numerical solution for
longitudinal and transverse directions,

(y,y)

bl = .
off (azux,y> 7=0

(10)
The calculations are made using the viscosity ratio of the
Cassie and Wenzel states. For completeness, we include the
data for p/mg =5, which correspond to oil-impregnated
textures. Figure 5 shows longitudinal [Figs. 5(a) and 5(b)]
and transverse [Figs. 5(c) and 5(d)] effective slip lengths as a
function of the solid fraction, 1 — ¢, for shallow [Figs. 5(a)
and 5(c)] and deep [Figs. 5(b) and 5(d)] grooves. The
eigenvalues of the effective lengths of a striped surface with
a piecewise constant local slip, be”, have been calculated
analytically [16],
L In [ sec (Z2)

I~
beff — ; ’

L
1L~ =
> 2an%‘ In| sec (%) + tan (%)]

(1)

Let us now try to define apparent constant local slip
lengths at the gas sectors. Equation (9) suggests the following
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FIG. 6. Apparentlocal slip as a function of the depth of the groove
for (a) longitudinal and (b) transverse directions. Symbols show the
values obtained using Eq. (11); solid curves show predictions of
Eq. (13).

definition:

b = gﬂlgf,y

Mg

; 12)

where dimensionless slip lengths, 2>, depend only on the
aspect ratio of the texture, e/5. We fitted our theoretical results
for u/me =5 to Eq. (11), taking B¢ as a fitting parameter.
The obtained values are surprisingly well described by simple
functions,

. erf(g.e/d)

P B~ erf(ge/9)

qx ‘ 4qy
with g, ~ 3.1, g, > 2.17. These functions saturate to 8, =~
0.32 and B! ~ 0.12 already at ¢/§ > 1, by imposing con-
straints on the attainable by (see Fig. 6).

Assuming B, found for u/u, = 5 are universal, we can
then use Eq. (11) to calculate the effective slip lengths for
/g =1 and 50. The results are included in Fig. 5.

A general conclusion is that the predictions of Eq. (11) with
the local slip defined by Eq. (12) are in excellent agreement
with exact theoretical results in the whole range of parameters,
0.1 <¢<09and pu/u, > 1, confirming the universality of
,Bf Y. Note that we included in Fig. 5 calculations of effective
slip lengths for perfect-slip stripes [10,12], which practically
coincide with our results for 1./ i1, = 50. We can then conclude
that SH surfaces in the Cassie state provide the very general
upper bound for the effective slip of textured surfaces, valid for
any large viscosity contrast (e.g., polymer melts [34]). Finally,
we observe an excellent agreement of our results for pu/pu, = 1
with earlier data even for the Wenzel state obtained by using a
completely different approach [31].

Now, we recall that for dilute pillars, § >~ L, the average
local slip was shown to scale as [21]

13)

by ~ L g tanh (i) (14)
“ g Lg)’
with B(¢). For deep pillars, Eq. (14) transforms to b} ~
Lﬂiﬁ [cf. Eq. (12)], and for pillars with ¢ = 0.9, we evaluate
8
B =~ 0.2 [21]. This value is close to the exact ones found here
for deep rectangular grooves, B, so our theory provides a
good sense of the possible local slip of 2D texture.

IV. CONCLUSION

We have proposed an operator method, which allowed us
to map the flow in the gas subphase to a local slip boundary
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condition at the gas area of SH surfaces. The determined slip
length is shown to be a unique function of the viscosity contrast
and topography of the underlying texture. Our main results,
given by Eqgs. (9) and (12), can be thus viewed as a general
gas cushion model for textured surfaces, which transforms to
the standard model, given by Eq. (3), in the case of shallow
textures. We have proven that besides Cassie surfaces, our
approach is valid for Wenzel textures, as well as rough surfaces
impregnated by a lubricant with lower viscosity.

We checked the validity of our approach by studying a
flow past canonical rectangular grooves, but our strategy can
be immediately applied for 1D textures with different cross
sections or extended to more complex 2D textures. These
textures include various pillars, holes, and lamellae of a
complex shape. Thus, our results may guide the design of
textured surfaces with superlubricating potential in microflu-
idic devices, tribology, polymer science, and more. Another
fruitful direction could be to apply our method to calculations
of an electro-osmotic [35-37] and diffusio-osmotic [38] flow
past textured surfaces.

APPENDIX A: DIRICHLET-TO-NEUMANN MATRIX FOR
A RECTANGULAR GROOVE

For rectangular geometries, the Fourier method can be
implemented to calculate the DtN matrices.

Longitudinal configuration. We introduce the nondimen-
sional variables in the gas domain, n = y/§ and ¢ = z/6.
Following [14], we seek for the solution of the Laplace
equation in gas in the form

Uex(m,0) =Y _ ¢ sinh[k}, (¢ + d)] cos(kym),

m=1

(AL)

where k), = (2m — 1)m, d = e/$. Each term in this series is a
partial solution of the Laplace equation, which is symmetric
in 1 and satisfies the no-slip boundary conditions at the side
walls, n = £1/2, and at the bottom wall of the groove, { = —d
(see Fig. 1).

The velocity and its normal derivative at the liquid-gas
interface are

[o¢]

£ =0: Uy = Zcm sinh(k},d) cos(k},n),
m=1

Ol gy

e

The relation between them can be obtained from (A2),

o0
= Y kpcm cosh(ky,d) cos(k ).

m=1

(A2)

Ot gy
¢
u; = ¢y sinh(kd),
I1,; = k;, coth(k},e/8)8p, m,I=1,...,00

Z(nmnu*>cos(k m,
m=1

Here, I1,,; is the representation of the DtN operator in the
Fourier space.

The last step is to transform this operator into physical
space, so that it can be applied as a boundary condition. To
do so, we introduce a spatial grid n; = (@ — 1)/(2N), i =1,
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.,N, at the liquid-gas interface (due to the symmetry, it
is sufficient to consider only a half of the period) and cut
the cosine series (Al) to N terms accordingly. Considering
Eq. (A2) at each grid node, we have

N
z : *
Emumv

m=1

ng(’?i,()) =

and hence

N
Z g (0:,0),

where Fj,, = cos(k;;,n;) is the collocation matrix.
The normal derivative of the velocity (using dimensional
variables y,z) reads

augx(n,,O) o

Z Plug.(n;.0),

where

1
Py = 5 (FuTluFj')

is the DtN matrix for the longitudinal flow.

Transverse configuration. We assume that the liquid-gas
interface is flat, so that ug, =0 at { = 0. The symmetry
condition implies that u,, is symmetric in 7, while u,;,
is antisymmetric. We represent the solution in gas in the
following form [14]:

. > cos(k;n) , ,
gy (.0) = ; T comnd) A Ka® + BiGL 0]
+ ) cos(But) Dy Hy(),
n=1
0 k*
Ltgz(r},{) = Z %[Anl(n(g) + BnGn(C)]

= Zsm(ﬁn;)

K, = sinh(k;¢) — ¢ exp[—k, (¢ + d)]sinh(k]d)/d,
G, = k¢ sinh[k, (¢ + d)],
H, = 2exp(—pB,/2) [cosh(B,n) — 25 coth(B,/2) sinh(B,1)] ,

where k = (2n — ) and B, = nnd; A,, B,, and D, are
the unknown coefficients. The conditions of nonpermeability
at the side walls, u,, =0 at n = £1/2, and at the bottom
wall and at the interface, u,, = 0 at { =0, — d, are satisfied
automatically. The no-slip boundary conditions at the walls of
the groove (u,, = 0atn = +1/2and u,, = 0at{ = —d) and
the continuity condition at the interface (g, = v* at £ = 0)
have to be satisfied by a proper choice of the coefficients
A,,B,,D,.Todo so, we cut the series to N terms and introduce
a grid covering the walls of the groove and the interface and
containing 3N nodes (N at each wall or interface). Calculating
the tangential velocity at each point of the groove, we obtain a
system of 3N linear equations for a 3N-component vector

H (),
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Z, ={A:,...,AN,By1,...,BNn,Dy,...,D,}. The right-hand
sides of the equations are equal to zero at the groove’s walls
(no-slip) and to liquid velocity at the interface, u,,(0,n;) =
v*(n;). The solution satisfying the no-slip boundary conditions
and taking the prescribed values at the interface can be
expressed in a matrix form:

N
Zi = Z Mijv*(n;),
=0

where v*(n;) is a N-component vector of velocity at the
interface grid points and M;; is a 3N x N matrix. Then
the normal derivative at the interface can be expressed in the
following way:

0v,(n;,0) _

N
ﬁ _ ¥ * *
> 2| =" exp(—k;d) tanh(k;d) + B,k
aC ~"|d

x cos(kyn;) = QixZk,

where Qi is N x 3N matrix.
Going back to dimensional variables y,z, we obtain the
following representation for the N x N DtN matrix:

Py =87 QuMy;.

APPENDIX B: NUMERICAL SOLUTION IN LIQUID

The nonlocal boundary condition given by Eq. (5) is easy
to implement with the Fourier method. For simplicity, we
consider only the longitudinal flow here; the procedure for
the transverse flow is similar. We present the flow over the
superhydrophobic surface as a sum of the undisturbed flow
and the correction due to the slip,

ux(y,z) = uo(z) + ui(y,z),

where up(z) = Gz is a simple shear flow and G is the
undisturbed shear rate. The correction is sought in the form of
a cosine series, since the solution is symmetric in y,

o0
1(y,2) = co+ Y cm cos(kiny) exp(—kin2),

m=1

where k,, = 2mm/L.
Boundary conditions for the correction read

9
%—Px[ul]——G0<y<8/2
Z

uy =0,6/2<y<1L/2 B

(due to the symmetry of the problem, it is sufficient to consider
only a half of the period). We take the same spatial grid that
is used for the DtN matrix: y; = §n; with N nodes over the
groove,

yi=6(i—1)/2N, i=1,...,N,
and add M nodes at the boundary in contact with the solid,
=(L =80 - D/[2(M - D] +6/2,
i=N+1,.... N+ M.
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We cut the series to Ny =N + M terms and obtain the
following linear system:

f
ZDikcm =-Gji=1,....N
m=1

Ny

co + Zcmcos(kmyi) =0i=N+1,...,Ny,

m=1

Diy, = k,, cos(k, y;) — Z PX cos(k,y;).

(B2)
Once the matrix Pl*/ is known, the linear system (B2) can be
solved to find the correction, and the complete velocity field
in liquid can be calculated. A similar procedure can be applied

to the transverse flow (see Ref. [18]).

APPENDIX C: ASYMPTOTIC SOLUTION NEAR THE
EDGE OF THE GROOVES

Here we obtain a solution in the vicinity of the groove
corner by using polar coordinates (7,0) [30,31], with the origin
at (y¢,z.) = (—=8/2,0), sothat y = y. +rdcosf, z =rdsin6
[see Fig. 3(a)]. A similar approach has been applied earlier for
single-phase flows to describe singularities near sharp corners.
For the flow over a surface with rectangular grooves, the
shear stress has been found to be singular, i.e., proportional
to r~'/3 for longitudinal and to %43 for transverse
configurations [31]. The edge between different slipping flat
interfaces has also been considered, with alternating no-slip
and slip stripes [32,39], and trapezoidal and triangular profiles
of the local slip b(y) [30].

For the two-phase flow near the corner of a groove with flat
interface, the liquid-solid, liquid-gas, and gas-solid interfaces
correspond to & = 0, 6 = 7, and 8 = 37 /2 (if the wall of the
groove is vertical). A general solution of the dimensionless
Laplace equation is a power dependence on the distance r:

r<l: u, =r*[asin(00) + gcos(A0)], cn

Ugy = r* [esin(X0) + h cos (A0)], (C2)

where a, g, ¢, and h are constants which may be found by
matching (C1) and (C2) with the flow at r ~ 1. However,
the exponent A can be obtained solely from the boundary
conditions.

The no-slip boundary condition for the liquid phase at
6 = 0, the no-slip boundary condition for the gas phase
at @ = 3m/2, and the coupling conditions at the gas-liquid
interface, given by Eq. (1), lead to a linear systemona, g, ¢, h
which yields the following equation on A:

(3kn>
tan| — | =
2

Thus the exponent depends on the viscosity ratio (/1 only.
Previous analytical solutions, i.e., A = 2/3 for a single-phase
rectangular hydrophilic groove with wu/u, =1 [31], and
Aideat = 1/2 for a flat shear-free interface with p/ug, = 0o
[10,39], satisfy the equation obtained. When the viscosity ratio
is large, as for the liquid-gas case, we construct an asymptotic

(1 — 1) tan(Ar)

. C3
W+ g tan?(Arr) €3
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solution of (C3) in terms of a series in pg/p < 1:

1 e
A= - P L o(Z2). (C4)
2 um u?
The asymptotic solution (C4) is close to that for alternating
no-slip and perfect-slip stripes with Ajgeq = 1/2. The local
slip length near the edge can be defined as

by = 20T s B s

r<l: ~
Oguy(r,m) Mg

Therefore, b, is linear in the distance r from the corner at the
liquid-gas interface. The slope of the dependence is large, i.e.,
of order of 1t/ t,.

For the flow transverse to the grooves, we represent the
solution in liquid in terms of a streamfunction v which satisfies
a biharmonic equation A%y = 0. A general solution can be
presented in the form [31]

Y (r,0) = r* {asin(A0) + g sin[(A — 2)0]
4+ ccos(AB) + hcos[(A — 2)0]}. (C5)
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The radial and the angular components of the liquid velocity
are

ur(r,0) = @, ug(r.0) = =0, y. (Co)

Equations similar to (C5) and (C6) can also be written for the
gas streamfunction ¥, and velocity components ug,, ugg. We
apply the no-slip boundary conditions at @ = 0 and 6 = 37 /2
and the continuity conditions at the gas-liquid interface, 0 = 7,
and, similar to (C3), we obtain the equation governing A:

tan(Aw) @ 24% —4r 4 1+ cos(Aw)
20.— 1) pg 41— A)cos? (Ar/2)

(C7)

For a shear-free interface, u/u, = oo, we have from (C7)
Aideat = 1/2. Therefore, for large 11/ 11, we can again construct
an asymptotic solution of (C7). The local slip length, to the
first order in ptg /., reads

u,(r,m) N 1 u

——T8.

l: e~
r< Ogu,(r,m) 2 g

by(r) =
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