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We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the
mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a
hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence
of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is
also controlled by an additional electric force, which increases the shear stress at the slipping interface. To
account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which
should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions.
Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit
charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.
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The electrostatic diffuse layer (EDL), i.e., the region
where the surface charge [1] is balanced by the cloud of
counterions, is the central concept in understanding dynamic
properties of colloidal systems since it is an origin of
numerous electrokinetic effects. This includes electro-
osmotic (EO) flow with respect to a charged surface that
provides an extremely efficient way to drive and manipulate
flows in micro- and nanofluidic devices [2–4]. Most studies
of EO assume no-slip hydrodynamic boundary conditions
at the surface, which are typical for wettable (hydrophilic)
surfaces. In this situation, the outer EO velocity u1
(outside of the thin EDL) due to the tangential electric field
Et is given by the Smoluchowski formula,

u1 ¼ −
Etq1
ηκ

; ð1Þ

where η is the viscosity of the solution, q1 is the charge
density at the no-slip surface, related to the so-called zeta
potential, ζ1 ¼ q1=κε. Here, ε is the permittivity of the
solution, and κ ¼ λ−1D is the inverse Debye screening length.
Obviously, ζ1 is equal to the EDL potential.
In practice, however, nonwetting (hydrophobic) materi-

als show hydrodynamic slip, characterized by the slip
length b (the distance within the solid at which the flow
profile extrapolates to zero) [5]. Some moderate slip, of the
order of nanometers, was detected even in weakly hydro-
philic systems [6]. For a charge density q2 at the slipping
solid interface, simple arguments show that the outer EO
velocity is given by [7,8]

u2 ¼ −
Etq2
ηκ

ð1þ bκÞ: ð2Þ

The zeta potential was thus interpreted as ζ2 ¼
q2ð1þ bκÞ=κε. Since, at hydrophobic solids, b can be
of the order of tens of nanometers [9–12], for typically
nanometric Debye length some small enhancement of the
zeta potential and EO flow was observed experimentally
[13]. We remark, however, that Eq. (2) fails to predict a
realistic ζ2 of the free interface of bubbles (b ¼ ∞) or oil
drops [14–16] and, in fact, of systems with large partial slip
such as gas sectors of superhydrophobic surfaces [17].
Previous studies assumed that an electric charge asso-

ciated with slippery surface was immobile, which is not
justified for bubbles or drops. This is also by no means
obvious for hydrophobic solids, because the gas cushion
model relates the hydrophobic slip to the formation of a
depletion layer at the surface [18]. This idea has received a
microscopic foundation in terms of a prewetting transition
[19], and was confirmed by recent simulations [20,21].
There is growing evidence that such an interface is weakly
charged [22,23]. The existence of surface charges can be
caused by ion adsorption [24,25], so that they are laterally
mobile, and can respond to the external electric field.
Indeed, experiments with foam films suggested that an
electric field drives charges at the free surface in opposite
directions [26], and recent analysis has shown that this
could enhance the shear stress [27], but we are unaware of
any prior work that has explored what happens in channels
with partially slipping hydrophobic walls if adsorbed
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charges are mobile. In this Letter, we present some general
theoretical arguments and results of dissipative particle
dynamics (DPD) simulations, which allow us to quantify an
EO flow in such channels. Our analysis leads to a new
interpretation of the zeta potential of hydrophobic surfaces.
We consider an EO flow of an aqueous electrolyte

solution between two flat walls as sketched in Fig. 1,
and define the locus of surfaces at the beginning of EDLs,
z ¼ 0 and z ¼ H ≫ λD, where EO slip velocities and zeta
potentials are determined. The hydrophilic surface has a
density of charge q1, and the hydrophobic surface is
characterized by the density of charge q2.
We keep our theory at the mean-field level and treat ions

as pointlike. Let us first consider an asymmetric channel
with one nonslipping hydrophilic surface (z ¼ 0∶u ¼ 0).
To describe the fluid velocity at the hydrophobic wall,
we suggest a boundary condition, which takes into account
that the tangential stress balance represents a combination
of both hydrodynamic and Maxwell stress components
(see the Supplemental Material [28]),

z ¼ H∶ u ¼ b½−∂zuþ ð1 − μÞq2Et=η�; ð3Þ

where parameter μ can vary from 0 for fully mobile charges
to 1 in the case of fixed charges. Now we want to compute
the velocity profile, which would be expected within a
continuous theory when condition (3) is valid.
The fluid flow satisfies Stokes’ equations with an

electrostatic body force,

η∇2u ¼ ε∇2ψE; ∇ · u ¼ 0; ð4Þ
where the electric field represents a superposition of an
external and a created by surface charges fields
E ¼ Et −∇ψ . The solution of Eq. (4), together with the
Poisson-Boltzmann equation and prescribed boundary
conditions, in general requires a numerical method.
However, in the case of typical for hydrophobic surfaces
low surface potentials a solution for ψðzÞ can be obtained

analytically (see the Supplemental Material [28]). In the
thin EDL limit, we then predict an outer EO shear flow,

uðzÞ
u1

¼ 1þ z
bþH

½ð1þ μκbÞq2=q1 − 1�: ð5Þ

The apparent EO slip at the hydrophobic surface is then

u2
u1

¼ 1 −
1 − ð1þ μbκÞq2=q1

1þ b=H
; ð6Þ

which suggests immediately that it is not a unique char-
acteristic of the surface. In contrast, it depends strongly on
the second surface of the channel provided b is of the order
of H or larger. One striking prediction is that even an
uncharged hydrophobic surface, q2 ¼ 0, can induce an
apparent EO slip. Another important result is that Eq. (6),
even at μ ¼ 1, differs from Eq. (2) derived for a single
interface and this suggests that, at b=H ≫ 1, the EO slip
velocity becomes independent on b and saturates to
u2=u1 ¼ 1þ κHq2=q1. However, when μ ¼ 0, this large
slip limit inevitably leads to u2=u1 ¼ 1.
Now, the same strategy can be applied for a symmetric

hydrophobic channel (with the charge density q2 and
slip length b at both walls), which is also relevant for
free soap and foam films that are currently a subject of
active research [26,40]. We apply a symmetry condition
(z ¼ H=2∶∂zu ¼ 0) together with Eq. (3) to solve Eq. (4)
in the thin EDL limit, and conclude that two situations
occur. For a finite slip, we obtain (see the Supplemental
Material [28])

u2 ¼ −
Etq2
ηκ

ð1þ μbκÞ: ð7Þ
Equation (7) reduces to Eq. (2) when μ ¼ 1 and justifies the
use of the Smoluchowski equation when μ ¼ 0. For b ¼ ∞
and μ ¼ 0, we predict zero flow rate in the channel with a
vanishing at very large κH outer EO velocity [28],

u2 ¼ −
Etq2
ηκ

2

κH
; ð8Þ

which explains simulation data for this case [41].
In order to assess the validity of the above approach,

we employ DPD simulations [42–44] carried out using
the open-source package ESPRESSO [45] (details are given
in the Supplemental Material [28]). We use a simulation cell
confined between two impermeable walls always located at
z ¼ 0 (except the case of a symmetric hydrophobic channel
with mobile surface charges, where the lower wall was at
z ¼ −1) and 14σ, where σ sets the length scale. The value of
κ ¼ ð8πlBc0Þ1=2withBjerrum lengthlB ¼ e2=4πεkBT was
determined by using the concentration, c0 ≃ 5 × 10−2σ−3,
outside EDLs, which gives κ−1 ¼ 1 − 1.2σ and provides
large κH. We set up b from 0 to ∞ at the walls by using a
tunable slip method [28,46].
Immobile surface charges are implemented by randomly

placing discrete unit charges qse in the no-slip hydrophilic

q1 Hydrophilic wall

LiquidEt
H

D

D

z Hydrophobic wall

dq2

FIG. 1 (color online). Sketch of the system in the case of an
asymmetric channel with one no-slip wall. In the case of a
symmetric channel, both slippery walls are equal. Fixed surface
charges are in the walls; mobile surface charges are adsorbed to
the neutral walls. This is important for a definition of H in
simulations, but not in the theory, where ions are pointlike, so that
d is infinitesimally thin.
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walls, to provide homogeneous q1 ¼ 0.15qse=σ2. We
adjusted 4πlBq1=κ < 1 to ensure the weak-charge behav-
ior. Fixed charges of a density q2 at the hydrophobic wall
are created similarly.
The mobile charges are modeled by applying an effective

interfacial potential, which leads to selective adsorption
of one type of ion to an electroneutral hydrophobic wall.
Namely, we set Lennard-Jones (LJ) potential between
negative ions and the hydrophobic wall (see Fig 2), since
it qualitatively reproduces the potentials of mean force for
surface active ions [47]. The density of adsorbed charge q2
can be regulated by the strength of the LJ potential. The
ratio q2=q1 was varied from 1� 0.03 to 3� 0.1 by setting
different values of q1 at the no-slip (hydrophilic) surface.
Fixed in such a way, adsorbed charges are confined in a
layer of thickness d being in thermodynamic equilibrium
with the bulk electrolyte solution and respond to Et. The
thickness of the adsorbed layer, d≃ σ, is determined from
the simulation data (see the Supplemental Material [28]),
and the locus of surfaces was at z≃ 13σ or z ¼ 0.
We begin by studying an asymmetric channel, where

a variety of situations occurs depending on the parameters
of the surfaces. Fluid velocity profiles uðzÞ were first
simulated with q2=q1 ¼ 1, κH ¼ 12, and b=H ¼ 1.2,
by setting mobile (μ ¼ 0) and immobile (μ ¼ 1) charges
at the slipping surface. The results are shown in Fig. 3(a).
Also included are the data obtained for a channel with two
hydrophilic walls (b ¼ 0). A general conclusion from this
plot is that the simulation results are in excellent agreement
with predictions of mean-field theory, confirming the
validity of a continuum description and the electrohydro-
dynamic boundary condition, Eq. (3). For a hydrophilic
channel, we observe a classical behavior, where the inner
fluid velocity in the EDL increases from zero on the
surfaces with high gradients to form an outer plug EO
flow in the electroneutral center. A hydrophobic slippage
strongly amplifies the velocity if surface charges are
immobile with an outer shear flow, perfectly described
by Eq. (5). The slipping surface with mobile charges
generates a plug profile in the center, and neither outer

nor inner EO velocities show a manifestation of the
hydrodynamic slip. Simulation data show that this is,
however, accompanied by some negative flow in the
adsorbed layer. We finally note that simulated ion density
profiles are superimposed in all cases, as seen in Fig. 3(b).
This confirms that the EO slip near hydrophobic surfaces
no longer reflects the sole EDL potential.
To explore flow behavior near a hydrophobic surface

with mobile charges in more detail, we continue with
varying the ratio q2=q1 from 0 to 3 at fixed b=H ¼ 1.2. The
simulation results and theoretical predictions are given in
Fig. 4 and are again in a good agreement (since the flow in
the adsorbed layer is qualitatively the same as in Fig. 3(a),
we do not show it here and below). We see that an apparent

FIG. 2 (color online). Top: Lennard-Jones adsorption potential
applied in simulations. Bottom: a concentration profile of
adsorbed ions and the model with homogeneous charge distri-
bution inside the adsorbed layer.
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FIG. 3 (color online). (a) Fluid velocity profiles simulated at
q2=q1 ¼ 1 and κH ¼ 12 (symbols). Circles correspond to a
hydrophilic channel; squares and triangles represent a channel
with a hydrophobic surface, b=H ¼ 1.2, with μ ¼ 1 and 0. Solid
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EO slip u2 at the hydrophobic surface increases with q2=q1,
but a variety of physically different situations occurs
depending on the value of this ratio. An uncharged hydro-
phobic surface induces an EO slip, and we see a manifes-
tation of an outer shear flow. As discussed above, in the
case of symmetric charges q2=q1 ¼ 1, we see no indication
of a hydrodynamic slip. Finally, for larger q2=q1, we again
observe an outer shear flow. These observations are well
described by Eq. (5). This equation also suggests that if
q2=q1 < 1, the hydrodynamic slippage amplifies u2 as
compared to expected values for a hydrophilic surface,
where u2 ¼ u1q2=q1, but when q2=q1 > 1 hydrodynamic
slip inhibits the apparent EO slip. A key remark is that this
amplification or inhibition is no longer dependent on the
equilibrium properties of the EDL, but note that a rich
outer EO behavior is accompanied by the unusual flow
within the EDL. A charged hydrophobic surface actively
participates in the flow-driving mechanism since it reacts
electrostatically to the field by inducing a forward or
backward inner EO flow.
We now illustrate the influence of a hydrodynamic slip

on EO flow in the case of μ ¼ 0 (Fig. 5). According to
Eq. (6), with the charge ratio q2=q1 ¼ 2, the apparent EO
slip should be inhibited compared to a hydrophilic case,
which is fully confirmed by our results. In the case of
b=H ¼ Oð1Þ, we observe a decrease in the outer shear EO
flow and a corresponding apparent EO slip at the hydro-
phobic surface. However, in the limit of b ¼ ∞ (a wetting
film), we observe the plug outer flow (also reported in
Ref. [27]), which reflects the EDL dynamics, where an
electrostatically active interface induces the strong inner
flow opposite to the field.
Let us now turn to the EO properties of a symmetric

channel with μ ¼ 0 and plot in Fig. 6 the simulated EO
velocities (related to u1 expected in the no-slip case with
q1 ¼ q2) for several values of the slip length. We see that
outer and inner EO flows simulated at several finite b
values coincide with the Smoluchowski profile as predicted
by Eq. (7), which is accompanied by the backward flow in
the adsorbed layer. We have also explored what happens

when b ¼ ∞, and generally confirm a much smaller
magnitude of a plug outer flow, also observed in Ref. [41].
Finally, we can interpret a zeta potential of a hydrophobic

surface, which is naturally defined as ζ2 ¼ −u2η=Etε. In a
thick asymmetric channel, it is therefore ζ2=ζ1 ¼ u2=u1,
described by Eq. (6). However, if b=H ≪ 1, Eq. (6)
reduces to

ζ2 ¼
q2ð1þ μκbÞ

κε
; ð9Þ

and zeta potential becomes a characteristic of a hydrophobic
surface solely. Equation (9) is relevant for the understanding
of highly debated zeta-potential measurements on free inter-
faces of (not confined) bubbles and oil drops [14–16].
Equation (7) implies that a zeta potential of a hydrophobic
surface in a thick symmetric channel is also given by
Eq. (9), except the case b ¼ ∞ and μ ¼ 0, where zeta
potential becomes ζ2 ¼ 2q2=ϵκ2H ≃ 0.
In conclusion, we have formulated an electrohydrody-

namic slip boundary condition and demonstrated that
both confinement and mobility of surface charges have a
dramatic effect on the hydrodynamic properties of the EDL
and EO flow. Simple analytical formulas for the apparent
EO slip and zeta potential at the hydrophobic surface have
been suggested, which resolve a number of paradoxes and
confusions in the literature. Our results obtained for cases
of immobile and fully mobile charges give rigorous upper
and lower bounds on an EO slip for arbitrary hydrophobic
surfaces given only the surface charge or potential and
(any) slip lengths. These bounds constrain the attainable
zeta potential, and provide guidance for experimental
measurements of μ, which in some real systems could
be confined in the interval from 0 to 1. Our study may be
immediately extended to the challenging case of κH ¼
Oð1Þ and smaller [3,4], where the outer EO is absent.
Another fruitful direction could be to apply our results to
revisit calculations of an EO flow past superhydrophobic
surfaces [48–50].

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

u(
z)

/u
1

z/H

b/H = 0
1.2

∞

FIG. 5 (color online). Fluid velocity profiles simulated at
κH ¼ 12, q2=q1 ¼ 2, and μ ¼ 0 (symbols). From top to bottom,
b=H ¼ 0, 1.2, and ∞. Solid curves show theoretical results;
dotted lines are predictions of Eq. (5).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

u(
z)

/u
1

z/H

∞

b/H = 0 - 2.4

FIG. 6 (color online). Fluid velocity profiles in a symmetric
channel simulated at κH ¼ 11 and μ ¼ 0 (symbols). Upper
curves were simulated at b=H ¼ 0, 0.08, 1.3, and 2.4; bottom
curve corresponds to b=H ¼ ∞. Solid curves show theoretical
results; upper dotted lines are predictions of Eq. (7); and lower
dotted lines are predictions of Eq. (8).

PRL 114, 118301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

118301-4



This research was partly supported by the Russian
Foundation for Basic Research (Grant No. 12-03-00916)
and by the DFG through SFB 985. The simulations
were carried out using computational resources of the
Supercomputing Center of the M. V. Lomonosov
Moscow State University.

*Corresponding author.
oivinograd@yahoo.com

[1] In experimental systems, such a surface charge is normally
not intrinsic, and is at a (few Å) layer of adsorbed
(nondiffuse) counterions but note that in some specific
cases the picture can be more complex [51].

[2] T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977
(2005).

[3] P. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80,
839 (2008).

[4] J. C. T. Eijkel and A. van den Berg, Microfluid. Nanofluid.
1, 249 (2005).

[5] O. I. Vinogradova, Int. J. Miner. Process. 56, 31 (1999).
[6] L. Bocquet and E. Charlaix, Chem. Soc. Rev. 39, 1073

(2010).
[7] V. M. Muller, I. P. Sergeeva, V. D. Sobolev, and N. V.

Churaev, Colloid J. USSR 48, 606 (1986).
[8] L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Phys. Rev. Lett.

93, 257805 (2004).
[9] O. I. Vinogradova and G. E. Yakubov, Langmuir 19, 1227

(2003).
[10] C. Cottin-Bizonne, B. Cross, A. Steinberger, and E.

Charlaix, Phys. Rev. Lett. 94, 056102 (2005).
[11] L. Joly, C. Ybert, and L. Bocquet, Phys. Rev. Lett. 96,

046101 (2006).
[12] O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois,

Phys. Rev. Lett. 102, 118302 (2009).
[13] C. I. Bouzigues, P. Tabeling, and L. Bocquet, Phys. Rev.

Lett. 101, 114503 (2008).
[14] P. Creux, J. Lachaise, A. Graciaa, J. K. Beattie, and A. M.

Djerdjev, J. Phys. Chem. B 113, 14146 (2009).
[15] K. G. Marinova, R. G. Alargova, N. D. Denkov, O. D. Velev,

D. N. Petsev, I. B. Ivanov, and R. P. Borwankar, Langmuir
12, 2045 (1996).

[16] M. Takahashi, J. Phys. Chem. B 109, 21858 (2005).
[17] T. V. Nizkaya, E. S. Asmolov, and O. I. Vinogradova, Phys.

Rev. E 90, 043017 (2014).
[18] O. I. Vinogradova, Langmuir 11, 2213 (1995).
[19] D. Andrienko, B. Dünweg, and O. I. Vinogradova, J. Chem.

Phys. 119, 13106 (2003).
[20] S. M. Dammer and D. Lohse, Phys. Rev. Lett. 96, 206101

(2006).
[21] C. Sendner, D. Horinek, L. Bocquet, and R. Netz, Langmuir

25, 10768 (2009).
[22] V. Tandon, S. K. Bhagavatula, W. C. Nelson, and B. J.

Kirby, Electrophoresis 29, 1092 (2008).
[23] R. A. Pushkarova and R. G. H. Horn, Langmuir 24, 8726

(2008).
[24] D. J. Tobias, A. C. Stern, M. D. Baer, Y. Levin, and C. J.

Mundy, Annu. Rev. Phys. Chem. 64, 339 (2013).

[25] D. M. Huang, C. Cottin-Bizonne, C. Ybert, and L. Bocquet,
Phys. Rev. Lett. 98, 177801 (2007).

[26] O. Bonhomme, O. Liot, A. L. Biance, and L. Bocquet,
Phys. Rev. Lett. 110, 054502 (2013).

[27] W. Choi, A. Sharma, S. Qian, G. Lim, and S. W. Joo,
J. Colloid Interface Sci. 347, 153 (2010).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.118301 for a
derivation of Eqs. (3), (5), (6), and (7), and details of
simulations. The Supplemental Material includes
Refs. [13,18,22,23,29–39,42,43,46].

[29] D. Exerowa, N. V. Churaev, T. Kolarov, N. E. Esipova,
N. Panchev, and Z. M. Zorin, Adv. Colloid Interface Sci.
104, 1 (2003).

[30] H. K. Christenson and P. M. Claesson, Adv. Colloid Inter-
face Sci. 91, 391 (2001).

[31] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.
Phys. 54, 5237 (1971).

[32] J. Smiatek, M. Sega, C. Holm, U. D. Schiller, and F.
Schmid, J. Chem. Phys. 130, 244702 (2009).

[33] J. Zhou, A. V. Belyaev, F. Schmid, and O. I. Vinogradova,
J. Chem. Phys. 136, 194706 (2012).

[34] E. S. Asmolov, J. Zhou, F. Schmid, and O. I. Vinogradova,
Phys. Rev. E 88, 023004 (2013).

[35] R. W. Hockney and J. W. Eastwood, Computer simulation
using particles (Taylor & Francis, London, 1989).

[36] M. Deserno and C. Holm, J. Chem. Phys. 109, 7678
(1998).

[37] M. Deserno and C. Holm, J. Chem. Phys. 109, 7694
(1998).

[38] A. Arnold and C. Holm, in Advanced Computer Simulation
Approaches for Soft Matter Sciences II, edited by C. Holm
and K. Kremer, Advances in Polymer Science Vol. 185
(Springer, Berlin, 2005), pp. 59–109.

[39] A. Arnold, J. de Joannis, and C. Holm, J. Chem. Phys. 117,
2496 (2002).

[40] L. Joly, F. Detcheverry, and A. L. Biance, Phys. Rev. Lett.
113, 088301 (2014).

[41] D. M. Huang, C. Cottin-Bizonne, C. Ybert, and L. Bocquet,
Langmuir 24, 1442 (2008).

[42] P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys.
Lett. 19, 155 (1992).

[43] P. Español and P. Warren, Europhys. Lett. 30, 191
(1995).

[44] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423
(1997).

[45] H. Limbach, A. Arnold, B. Mann, and C. Holm, Comput.
Phys. Commun. 174, 704 (2006).

[46] J. Smiatek, M. Allen, and F. Schmid, Eur. Phys. J. E 26, 115
(2008).

[47] R. R. Netz and D. Horinek, Annu. Rev. Phys. Chem. 63, 401
(2012).

[48] A. V. Belyaev and O. I. Vinogradova, Phys. Rev. Lett. 107,
098301 (2011).

[49] T. M. Squires, Phys. Fluids 20, 092105 (2008).
[50] S. S. Bahga, O. I. Vinogradova, and M. Z. Bazant, J. Fluid

Mech. 644, 245 (2010).
[51] A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, L. K.

Koopal, and J. Lyklema, J. Colloid Interface Sci. 309, 194
(2007).

PRL 114, 118301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

118301-5

http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/RevModPhys.80.839
http://dx.doi.org/10.1103/RevModPhys.80.839
http://dx.doi.org/10.1007/s10404-004-0012-9
http://dx.doi.org/10.1007/s10404-004-0012-9
http://dx.doi.org/10.1016/S0301-7516(98)00041-6
http://dx.doi.org/10.1039/B909366B
http://dx.doi.org/10.1039/B909366B
http://dx.doi.org/10.1103/PhysRevLett.93.257805
http://dx.doi.org/10.1103/PhysRevLett.93.257805
http://dx.doi.org/10.1021/la026419f
http://dx.doi.org/10.1021/la026419f
http://dx.doi.org/10.1103/PhysRevLett.94.056102
http://dx.doi.org/10.1103/PhysRevLett.96.046101
http://dx.doi.org/10.1103/PhysRevLett.96.046101
http://dx.doi.org/10.1103/PhysRevLett.102.118302
http://dx.doi.org/10.1103/PhysRevLett.101.114503
http://dx.doi.org/10.1103/PhysRevLett.101.114503
http://dx.doi.org/10.1021/jp906978v
http://dx.doi.org/10.1021/la950928i
http://dx.doi.org/10.1021/la950928i
http://dx.doi.org/10.1021/jp0445270
http://dx.doi.org/10.1103/PhysRevE.90.043017
http://dx.doi.org/10.1103/PhysRevE.90.043017
http://dx.doi.org/10.1021/la00006a059
http://dx.doi.org/10.1063/1.1627751
http://dx.doi.org/10.1063/1.1627751
http://dx.doi.org/10.1103/PhysRevLett.96.206101
http://dx.doi.org/10.1103/PhysRevLett.96.206101
http://dx.doi.org/10.1021/la901314b
http://dx.doi.org/10.1021/la901314b
http://dx.doi.org/10.1002/elps.200700734
http://dx.doi.org/10.1021/la8007156
http://dx.doi.org/10.1021/la8007156
http://dx.doi.org/10.1146/annurev-physchem-040412-110049
http://dx.doi.org/10.1103/PhysRevLett.98.177801
http://dx.doi.org/10.1103/PhysRevLett.110.054502
http://dx.doi.org/10.1016/j.jcis.2010.03.049
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.118301
http://dx.doi.org/10.1016/S0001-8686(03)00033-2
http://dx.doi.org/10.1016/S0001-8686(03)00033-2
http://dx.doi.org/10.1016/S0001-8686(00)00036-1
http://dx.doi.org/10.1016/S0001-8686(00)00036-1
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1063/1.3152844
http://dx.doi.org/10.1063/1.4718834
http://dx.doi.org/10.1103/PhysRevE.88.023004
http://dx.doi.org/10.1063/1.477414
http://dx.doi.org/10.1063/1.477414
http://dx.doi.org/10.1063/1.477415
http://dx.doi.org/10.1063/1.477415
http://dx.doi.org/10.1063/1.1491955
http://dx.doi.org/10.1063/1.1491955
http://dx.doi.org/10.1103/PhysRevLett.113.088301
http://dx.doi.org/10.1103/PhysRevLett.113.088301
http://dx.doi.org/10.1021/la7021787
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://dx.doi.org/10.1209/0295-5075/19/3/001
http://dx.doi.org/10.1209/0295-5075/30/4/001
http://dx.doi.org/10.1209/0295-5075/30/4/001
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1063/1.474784
http://dx.doi.org/10.1016/j.cpc.2005.10.005
http://dx.doi.org/10.1016/j.cpc.2005.10.005
http://dx.doi.org/10.1140/epje/i2007-10311-4
http://dx.doi.org/10.1140/epje/i2007-10311-4
http://dx.doi.org/10.1146/annurev-physchem-032511-143813
http://dx.doi.org/10.1146/annurev-physchem-032511-143813
http://dx.doi.org/10.1103/PhysRevLett.107.098301
http://dx.doi.org/10.1103/PhysRevLett.107.098301
http://dx.doi.org/10.1063/1.2978954
http://dx.doi.org/10.1017/S0022112009992771
http://dx.doi.org/10.1017/S0022112009992771
http://dx.doi.org/10.1016/j.jcis.2006.12.075
http://dx.doi.org/10.1016/j.jcis.2006.12.075

