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Effective hydrodynamic boundary conditions for microtextured surfaces
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Understanding the influence of topographic heterogeneities on liquid flows has become an important issue
with the development of microfluidic systems, and more generally for the manipulation of liquids at the small
scale. Most studies of the boundary flow past such surfaces have concerned poorly wetting liquids for which the
topography acts to generate superhydrophobic slip. Here we focus on topographically patterned but chemically
homogeneous surfaces, and measure a drag force on a sphere approaching a plane decorated with lyophilic
microscopic grooves. A significant decrease in the force compared with predicted even for a superhydrophobic
surface is observed. To quantify the force we use the effective no-slip boundary condition, which is applied at
the imaginary smooth homogeneous isotropic surface located at an intermediate position between the top and
bottom of grooves. We relate its location to a surface topology by a simple, but accurate analytical formula. Since
grooves represent the most anisotropic surface, our conclusions are valid for any texture, and suggest rules for
the rational design of topographically patterned surfaces to generate desired drag.
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I. INTRODUCTION

The advent of microfluidics has motivated the growing
interest in understanding and modeling of flows at small scales
or in tiny channels. In recent years it has become clear that the
no-slip boundary condition at a solid-liquid interface is valid
only for smooth hydrophilic surfaces [1–4], and for many
other systems it does not apply when the size of a system
is reduced. Thus the hydrophobicity of smooth surfaces could
induce a partial slippage, vs = b∂v/∂z, where vs is the velocity
at the wall, b is the slip length, and the axis z is normal
to the surface [5]. This concept is now well supported by
nanorheology measurements [1,2,4].

However, only very few solids are molecularly smooth.
Most of them are rough, often at a micrometer scale. This
roughness may be induced by some processes of fabrication
or coating, but microtextures are also found on the surfaces
of most plants and animals. In particular, many solids are
naturally striated by grooves, which can also be prepared for
specific microfluidic purposes, such as passive chaotic mixing
[6,7]. Most studies of flow past rough surfaces have concerned
poorly wetting liquids for which the topography acts to favor
the formation of trapped gas bubbles (Cassie state), and to
generate superhydrophobic slippage [8,9]. For rough wettable
surfaces the situation is unclear, and opposite conclusions
have been made: one is that roughness generates extremely
large slip [10], and the other is that it decreases the degree
of slippage [11]. Recent data (supported by simulations [12])
suggest that the description of flow near rough surfaces has
to be corrected, but rather for a separation, not a slip [13,14].
Another suggestion is to combine these two models [15].

In this Rapid Communication we describe how the bound-
ary conditions can be modified by the surface texture. We

focus on the case of special interest where this model surface
is decorated by rectangular microgrooves, i.e., on the situation
of the largest possible anisotropy of the flow. We analyze
the hydrodynamic interaction between a smooth sphere and a
grooved plane, as sketched in Fig. 1, and the texture parameters
are systematically varied at the micrometer level, in order to
investigate their influence on a drag force. Our results do not
support some previous experimental conclusions on a large
slip for similar systems. Instead, we unambiguously prove the
concept of an effective no-slip plane shifted down from the
top of roughness. In this study, experimentally found values of
this shift were quantified theoretically and related analytically
to controlled parameters of topographic patterns.

II. EXPERIMENT

We use a specially designed homemade setup [16–18] to
measure on a microscale the displacement of a sphere towards
the corrugated wall at constant gravity force. The steel sphere
of density ρp = 7.8 × 103 kg m−3 and radii ranging from 3.5
to 6.35 mm is embedded in a liquid contained in a cylindrical
glass vessel with a 50 mm diameter and a 40 mm height. As a
liquid we have chosen high molecular weight PDMS (silicone)
oil (47V100000 Rhodorsyl oil, from Rhone-Poulenc), with
dynamic viscosity μ = 97.8 Pa s at 25 ◦C, which is Newtonian
for shear rates up to 100 s−1. Such shear rates are never reached
in our experiment.

The microstructured surfaces were created by common soft
lithography, in a three step process, transferring geometric
shapes from a mask: first to a silicon wafer coated with a
(SU8) photoresist, second to a replica molding obtained by soft
imprint of a thermoreticulable PDMS, and finally to a replica of
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FIG. 1. (Color online) Sketch of a sphere approaching a model
grooved surface (left) with the example of a typical experimental
signal and a scanning electron micrograph (taken under an angle) of
the surface obtained by a soft lithography (right).

the PDMS mold by soft imprint of a thiolene based resin (NOA
81, Norland optical adhesives) on glass microscope slides (to
be fixed at the bottom of the vessel). This resin was chosen for
its resistance to compression and to solvent swelling, and for
its good adhesion to glass [19]. The final structures are checked
by scanning electron microscopy (see Fig. 1). The textures are
characterized by spacing δ, height e, and period L. The liquid
fraction φ = δ/L can be precisely measured since it is the
ratio of the upper surface of the crenellations over the total
surface of the sample. It varies largely with the patterns (from
0.1 to 0.9), and e/L varies from 0.168 to 0.45, as displayed
in Table I. Contact angles against PDMS for all textures were
found to be below 30◦, so that surfaces can be considered as
lyophilic. Therefore, we expect PDMS to invade the surface
texture (Wenzel state).

We measure the distance h, which is defined from the top
of the textures (contact) by using an interferometric technique
[16–18] with accuracy 0.2 μm. The velocity U (h) of the sphere
is found by multiplying the velocity of interference fringes
displacement by a factor of λ/2n, where λ = 632.8 nm is the
wavelength of the He-Ne laser, and n = 1.404 is the refraction
index of PDMS. After optoelectronic conversion and amplifi-
cation, the signal is recorded with a high frequency electronic
oscilloscope (DPO4032 from Tektronics). A deceleration of
the sphere (Fig. 1) is reflected in the increase of the period
of the signal, until contact occurs, and its position is defined

TABLE I. Parameters of the textured samples and the shift of
effective hydrodynamic wall, s.

s, s, theory
L δ e experiment [Eqs. (4), (6), and (7)]

No. (μm) (μm) φ (μm) (μm) (μm)

1 100 50 1/2 45 5 ± 0.1 5.5
2 150 50 1/3 45 4.2 ± 0.3 3.5
3 150 100 2/3 45 13 ± 2 11.8
4 200 100 1/2 76 13 ± 3 10.4
5 200 100 1/2 45 9 ± 1.5 8.3
6 250 25 1/10 42 0.5 ± 0.1 0.6
7 250 225 9/10 42 28.5 ± 0.5 23.5

from the recorded signal, at the time when the period of the
signal becomes very large indicating a vanishing velocity.
Note that the signal-to-noise ratio deteriorates at vanishing
frequency, because the low frequency limit of the oscilloscope
is reached. The measured frequency is averaged over seven
to eight periods, except just before the contact, where no
averaging is applied in order to capture the rapid velocity
variations occurring in that region.

III. RESULTS AND DISCUSSION

Figure 2 shows the drag F (equal to the gravity force) scaled
by the Stokes force FSt = 6πμaU (h), i.e., U (∞)/U (h). The
solid line is a theoretical force (Taylor’s equation) predicted
for a case of smooth wall and no slippage at the surface:

FT /FSt = a/h. (1)

Also included are the experimental data for samples with
similar e, but different φ and L, which show deviations from
the behavior predicted by Eq. (1). Close to the wall, for
a/h > 50, the drag is always significantly less than the force
near a smooth wall, and this reduction increases with φ. To
examine these deviations we evaluate a correction to the drag
force,

f ∗(h) = F (h)/FT (h). (2)

Note that in general, the case for a rough surface f ∗ should
also depend on the radius of the sphere [12]. However,
with our configuration geometry experimental data do not
vary with a. This is well illustrated in Fig. 3(a), where
the experimental values of f ∗ obtained with sample No. 7
at different a and plotted as a function of h/L collapse
into a single curve, which tends to unity at large distances
and decreases significantly when h becomes of the order
of L and smaller. Since at short separations we observe
f ∗ → 0, one can conclude that slippage (which would lead
to f ∗ → 1/4 [20]) obviously does not mimic roughness
when h is small, by overestimating the drag force. The same
remark concerns effective superhydrophobic slippage where
f ∗ → 2(4 − 3φ)/(8 + 9φ − 9φ2) [21] and is equal to �0.3
for this particular sample.

Therefore, our experimental results are now compared with
theoretical calculations made for an effective smooth plane
shifted down from the top of the corrugations, i.e., by assuming
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FIG. 2. Normalized drag (symbols) as a function of a/h. From
top to bottom the data sets for samples Nos. 6, 2, 5, and 7 (see Table I).
Solid line shows the theoretical prediction for a smooth lyophilic wall,
Eq. (1), defined at the top of grooves. The dashed curves from top to
bottom are calculations of the force expected for a smooth lyophilic
wall shifted from the textured wall to a distance s = 0.5, 4.2, 9, and
28.5 μm.
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FIG. 3. Measured correction to drag (symbols) (a) for spheres
of different radii (a = 3.5, 5.75, and 6.35 mm) interacting with
sample No. 7. Dashed line shows the calculated correction, using
s = 28.5 μm in Eq. (3), (b) for striped walls having nearly same e,
but different φ and L; from left to right: samples Nos. 6, 2, 5, and 7.
Dashed lines: model, Eq. (3), with (a) s = 28.5 μm and (b) from left
to right: s = 0.5, 4.2, 9, and 28.5 μm.

F (h) = FT (h + s), where s is the value of constant, i.e.,
independent on h, shift. This implies that

f ∗(h) = FT (h + s)

FT (h)
= h

h + s
. (3)

Figure 3(a) includes a calculation (dashed curve) in which an
adjustable parameter, a shift of s = 28.5 μm, is incorporated
into the Taylor equation. The fit is very good for all h,
suggesting the validity of the model. Figure 3(b) shows another
series of experiments made with the fixed radius of the sphere,
but different parameters of the texture. If similar fits are
made to a variety of experiments it is found that the shift
of an equivalent plane required to fit each run increases from
0.5 μm for sample No. 2 to 28.5 μm for sample No. 7. In
Table I we present the experimental values of s for different
samples, and curves calculated with Eq. (3) are included in
Figs. 2 and 3. The fit is excellent at all separations except
as very small, h/L � 0.01. Thus our experiment shows that
an effective (scalar) shift s is a unique physical parameter
that fully quantifies drag reduction at a highly anisotropic
corrugated surface. This striking result indicates that in our
experiment pressure remains isotropic despite an anisotropy
of the flow.

Now we try to relate s to parameters of textured surfaces.
As proven in [17,21], for a large gap h � L the shift of the
equivalent no-slip plane from the real surface is equal to the
average of the eigenvalues of the effective slip-length tensor
(at the slip plane defined at the top of asperities)

s � b
‖
eff + b⊥

eff

2
. (4)

Therefore, the problem of calculating s reduces to computing
the two far-field eigenvalues b

‖
eff and b⊥

eff , which attain the
maximal and minimal directional slip lengths, respectively. In
the limit e 
 L 
 h, the theory [22] predicts that the effective
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FIG. 4. Experimental values of s/e (symbols) as a function of φ

for grooves with similar heights, but different φ and L. Lines show
theoretical predictions, Eq. (4), where b

‖
effand b⊥

eff are calculated by
using the analysis of [23] (solid lines), Eqs. (6) and (7) (dash-dotted
lines), and Eq. (5) (dashed lines): (a) samples Nos. 6 and 7 (black),
samples Nos. 2 and 3, (gray); (b) sample No. 5 (black) and sample
No. 1 (gray).

no-slip surface for arbitrary smooth periodic surfaces is at the
average height:

b
‖,⊥
eff � φe, (5)

so that s/e is controlled mainly by φ. To examine the
significance of φ more closely, the experimental s normalized
by e are reproduced in Fig. 4. The measured data show much
smaller s/e than the theoretical prediction of model (5) shown
by a dashed line. A possible explanation for this discrepancy is
that the height of asperities in our experiments was not small
enough, 0.168 � e/L � 0.45. We also compared our data with
another calculation (solid curves) for hydrophilic grooves with
finite e/L based on numerical results [23] for eigenvalues
of the slip-length tensor. Even at moderate e/L theoretical
predictions for s [23] are much smaller than measured values.

An alternative model can be obtained if we use the analytic
solutions for alternating slip and no-slip stripes [24]:

b
||
eff � L

π

ln
[

sec
(

πφ

2

)]

1 + L
πe

ln
[

sec
(

πφ

2

) + tan
(

πφ

2

)] , (6)

b⊥
eff � L

2π

ln
[

sec
(

πφ

2

)]

1 + L
2πe

ln
[

sec
(

πφ

2

) + tan
(

πφ

2

)] , (7)

where we naturally assumed that the local partial slip is equal
to the height of grooves. Figure 4 shows that Eq. (4) together
with Eqs. (6) and (7) (dashed curves) give almost quantitative
agreement with experimental data. (We also include theoretical
values of s in Table I to allow a direct comparison with
experimental results.) Therefore, by using the equivalence of a
flow past rough and heterogeneous surfaces at large scale, we
were able to quantify a drag reduction at the smaller scale, of
the order of the size of roughness elements. Note, however, that
our results do not apply to a very thin gap situation h 
 L,

where s scales with the channel width [25], which is again
consistent with our experiment.
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IV. CONCLUDING REMARKS

We have studied a drag force on a sphere approaching a
corrugated plane. Our experiment shows quantitatively that
in this situation the effective no-slip boundary condition,
which is applied at the imaginary smooth homogeneous
isotropic surface located at an intermediate position between
the top and bottom of grooves, fully mimics the actual one
along the true corrugated interface, except as for a very thin
gap. The location of this effective isotropic plane depends
on the parameters of the texture, and can be found by using
simple formulas for effective slip lengths in the limit of a
thick channel. Since for grooves anisotropy is maximized, the

same conclusion would be valid for other types of anisotropic
(e.g., sinusoidal, trapezoidal, and more) and/or isotropic (e.g.,
pillars, etc.) textures, but of course, Eqs. (6) and (7) should
be replaced by analytical or numerical solutions for a corre-
sponding texture, as will be described in subsequent papers.
We have also demonstrated that topographically patterned
(Wenzel) surfaces could reduce a drag force more efficiently
compared to expected even for slipping superhydrophobic
(Cassie) textures with trapped gas. Therefore, our results
suggested rules and a general strategy for the rational design
of topographically patterned surfaces to generate desired low
drag.
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