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Flow past superhydrophobic surfaces with cosine variation in local slip length
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Anisotropic superhydrophobic surfaces have the potential to greatly reduce drag and enhance mixing
phenomena in microfluidic devices. Recent work has focused mostly on cases of superhydrophobic stripes.
Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulas
for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement
with the exact numerical solution and lattice-Boltzmann simulations. Compared to the case of superhydrophobic
stripes, the cosine texture can provide a very large effective slip. However, the difference between eigenvalues of
the slip-length tensor is smaller, indicating that the flow is less anisotropic.
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I. INTRODUCTION

Design and fabrication of textured superhydrophobic sur-
faces have received much attention in recent years. If the
recessed regions of the texture are filled with gas (the Cassie
state), roughness can produce remarkable liquid mobility,
dramatically lowering the ability of drops to stick [1]. These
surfaces are known to be self-cleaning and show low adhesive
forces. In addition to the self-cleaning effect, they also exhibit
drag reduction for fluid flow. Thus, they are of importance
in the context of transport phenomena and fluid dynamics
as well [2–4]. Many sea animals, e.g., sharks and other fish,
are known to possess superhydrophobic skin [5]. Also many
artificial textures have been designed to increase drag reduction
efficiency [6].

The drag reduction is associated with the liquid slippage
past solid surfaces. This slippage occurs at smooth hydropho-
bic surfaces and can be described by the boundary condition
[2,7,8], uslip = b ∂u/∂z, where uslip is the (tangential) slip
velocity at the wall, ∂u/∂z is the local shear rate, and b is the
slip length. A mechanism for hydrophobic slippage involves
a lubricating gas layer of thickness δ with viscosity μg much
smaller than that of the liquid μ [9], so that b � δ(μ/μg −
1) � 50δ [9,10]. However, at smooth flat hydrophobic surfaces
δ is small, so that b cannot exceed a few tens of nm [11–14]. In
the case of superhydrophobic surfaces the situation can change
dramatically, and slip lengths up to tens of μm may be obtained
over a thick gas layer stabilized with a rough texture [15,16].

To quantify the flow past heterogeneous surfaces, it is
convenient to apply the concept of an effective slip boundary
condition at the imaginary smooth homogeneous, but generally
anisotropic, surface [3,17]. Such an effective condition mimics
the actual one along the true heterogeneous surface, and fully
characterizes the real flow [18]. The quantitative understanding
of the effective slip length of the superhydrophobic surface,
beff , is still challenging since the composite nature of the
texture in addition to liquid-gas areas requires regions of lower

local slip (or no slip) in direct contact with the liquid. For an
anisotropic texture, the effective slip generally depends on the
direction of the flow and is a tensor, beff ≡ {beff

ij }, represented
by a symmetric, positive definite 2 × 2 matrix [19],

beff = Sθ

(
b

‖
eff 0
0 b⊥

eff

)
S−θ , (1)

diagonalized by a rotation

Sθ =
(

cos θ sin θ

− sin θ cos θ

)
.

Equation (1) allows us to calculate an effective slip in any
direction given by an angle θ , provided the two eigenvalues
of the slip-length tensor, b

‖
eff (θ = 0) and b⊥

eff (θ = π/2), are
known. The concept of an effective slip length tensor is general
and can be applied for an arbitrary channel thickness [20],
being a global characteristic of a channel [3], so that the
eigenvalues normally depend not only on the parameters of
the heterogeneous surfaces, but also on the channel thickness.
However, for a thick (compared to a texture period, L) channel
in which we are interested here, they become a characteristics
of a heterogeneous interface solely.

In the case of an anisotropic isolated surface (or a thick
channel limit) with a scalar local slip b(y), varying in only one
direction, the transverse component of the slip-length tensor
was proven to be equal to half of the longitudinal one with a
twice as large local slip, 2b(y) [21],

b⊥
eff [b (y) /L] = b

‖
eff [2b (y) /L]

2
. (2)

A remarkable corollary of this relation is that the flow along
any direction of the one-dimensional surface can be easily
determined, once the longitudinal component of the effective
slip tensor is found from the known spatially nonuniform scalar
slip.
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One-dimensional superhydrophobic surfaces are very im-
portant for a class of phenomena that involves “transverse”
hydrodynamic couplings, where an applied pressure gradient
or shear rate in one direction generates flow in a different
direction, with a nonzero perpendicular component. This can
be used to mix adjacent streams, control the dispersion of
plugs, and position streams within the cross section of the
channel [22]. Such grooved surfaces can be prepared by
modern etching and lithographic methods [6].

Most of the prior work focused on a flat, periodic, striped
superhydrophobic surface, which corresponds to patterns of
rectangular grooves. The flow past such stripes was tackled
theoretically [3,23–27], and several numerical approaches
have also been used either at the molecular scale, using
molecular dynamics [28], or at larger mesoscopic scales using
finite-element methods [29,30], lattice-Boltzmann [20], and
dissipative particle dynamics [31] simulations. For a pattern
composed of no-slip (b = 0) and perfect-slip (b = ∞) stripes,
the expression for the eigenvalues of the effective slip-length
tensor takes its maximum possible value and reads [23,32]

b
‖
ideal = 2b⊥

ideal = −L

π
ln

[
sec

(
π (1 − φ)

2

)]
, (3)

where φ is the fraction of the no-slip interface. In the limit of
vanishing solid fraction, it therefore predicts b

‖
ideal and b⊥

ideal to
depend only logarithmically on φ and scale as −L ln φ. At a
qualitative level, this result means that the effective slip lengths
essentially saturate at the value fixed by the period of the
roughness. In the case of stripes, the perturbation of a piecewise
constant local slip has a steplike jump on the heterogeneity
boundary, which leads to a singularity both in pressure and
velocity gradient [21] by introducing an additional mechanism
for dissipation. It is natural to assume that an anisotropic
one-dimensional texture with a continuous local slip could
potentially lead to a larger effective tensorial slip.

In this paper, we address the issue of the effective slip of flat
surfaces with cosine variation in the local slip length, which
corresponds to modulated hydrophobic grooved surfaces with
a trapped gas layer (the Cassie state), as shown in Fig. 1.

FIG. 1. (Color online) Sketch of the superhydrophobic surface
with a cosine relief, and its equivalent representation in terms of flow
boundary conditions.

Flows over hydrophilic surfaces (the Wenzel state) with cosine
surface relief of small amplitude have been studied by a
number of authors [22,33–36]. Previous studies of similar
grooves in the Cassie state have investigated only small
variations in local slip length [33,37]. We are unaware of any
previous work that has studied the most interesting case of
finite and large variations in the amplitude of a local cosine
slip.

II. THEORY

Consider a shear flow over a textured flat slipping plate,
characterized by a slip length b(y), spatially varying in one
direction and the texture varying over a period L (as shown
in Fig. 1). We use a Cartesian coordinate system (x,y,z) with
the origin at the wall. The z axis is perpendicular to the plate.
Our analysis is based on the limit of a thick channel or a single
interface, so that the velocity profile sufficiently far above the
surface, at a large height compared to L, may be considered as
a linear shear flow. All variables are nondimensionalized using
the texture period L as the characteristic length, the shear rate
of the undisturbed flow G, and the fluid viscosity μ.

The dimensionless fluid velocity is sought in the form

v = U + uslip + u1(x,y,z),

where U = zel , l = x,y is the undisturbed linear shear flow,
and el are the unit vectors parallel to the plate. The perturbation
of the flow, which is caused by the presence of the texture,
involves a constant slip velocity uslip = (uslip,vslip,0) and a
varying part u1 = (u,v,w) of the velocity field. A periodic
velocity u1 should decay at infinity and has zero average:

∫ 1

0
u1dy = 0. (4)

At a small Reynolds number Re = GL2/ν, u1 satisfies the
dimensionless Stokes equations,

∇ · u1 = 0, ∇p − �u1 = 0. (5)

The boundary conditions at the wall and at infinity are
defined in the usual way as

z = 0 : uslip + u1τ − β (y)
∂u1τ

∂z
= β (y) el , (6)

w = 0, (7)

z → ∞ : u1 = 0, (8)

where u1τ = (u,v,0) is the velocity along the wall and β =
b/L is the normalized local slip length. The eigenvalues of the
effective slip-length tensor can be obtained as the components
of uslip:

b
‖
eff = Luslip, b⊥

eff = Lvslip. (9)

III. COSINE SLIP LENGTH

In this section, we consider a one-dimensional periodic
texture with the local slip length

β = β0 + 2β1 cos (2πy) . (10)
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The coefficients should satisfy β0 � 2β1 � 0 in order to obey
β (y) � 0 for any y.

The disturbance velocity field is presented in terms of
Fourier series as

u1 =
∞∑

n=−∞,n�=0

u∗ (n,z) exp (i2πny) , u∗ = (u∗,v∗,w∗).

(11)

A general solution of the Stokes equations for the flow in the
longitudinal direction (i.e., along the “fast” axis of greatest
forward slip, θ = 0), U = zex decaying at infinity, reads [21]

u∗ = Xn exp(−2π |n|z), v∗ = w∗ = 0. (12)

For the flow in the transverse direction (along the “slow” axis
of least forward slip, θ = π/2), U = zey is given by

u∗ = 0,

v∗ = Yn exp(−2π |n|z)(1 − 2πnz), (13)

w∗ = −i2πnYnz exp(−2π |n|z). (14)

The Fourier coefficients Xn and Yn are then determined from
the Navier slip boundary condition (6).

A. Longitudinal configuration

Since the local slip length is an even function of y, the
solution (11) is also an even function. This requires Xn = X−n,

so it is sufficient to evaluate Xn for n � 0. The Navier slip
boundary condition (6) can be written, following [21], in terms
of Fourier coefficients as a linear system,

uslip = β0 − 2e1X1, (15)

d1X1 + e2X2 = β1, (16)

n > 1 : en−1Xn−1 + dnXn + en+1Xn+1 = 0, (17)

dn = 1 + 2πnβ0, en = 2πnβ1. (18)

A three-diagonal infinite linear system (15)–(17) should be
solved numerically to find the unknown Xn by truncating the
system.

In the limit of large slip, β0 > 2β1 
 1, the asymptotic
solution to (15)–(17) can also be constructed. To the leading
order in β−1

0 , the first term in (18) can be neglected compared
to the second one, and the system (16) and (17) is rewritten for
new variables tn = 2πnXn as

t1 + λt2 = λ, (19)

n > 1 : λtn−1 + tn + λtn+1 = 0, (20)

where λ = β1/β0 < 1/2. The solution of the last system is a
geometric progression, tn+1 = qnt1, with

q = −λ−1 + √
λ−2 − 4

2
, t1 = λ

1 + qλ
= β1

β0 + qβ1
.

Therefore, the final expression for the slip length, b‖
eff = Luslip,

in view of (15), takes the following form at β0 > 2β1 
 1:

b
‖
eff =

√
b2

0 − 4b2
1. (21)

The asymptotic solution for the velocity field can also be
derived from Eqs. (11) and (12). The normal component of
velocity gradient can be written as

∂u

∂z
= −2t1

∞∑
n=1

qn−1Re {exp [2πn (iy − z)]} . (22)

The factor 2 is due to the contribution of n < 0. The sum in
(22) is also a geometric progression, so that

∂u

∂z
= −2t1 exp(−2πz)[cos(2πy) − q exp(−2πz)]

s
,

s = 1 − 2q cos (2πy) exp(−2πz) + q2 exp(−4πz). (23)

The last equation can be integrated over z to give

u = − t1

2πq
ln s. (24)

B. Transverse configuration

It was found in [21] that the velocity components for the
transverse configuration can be expressed in terms of the
longitudinal one calculated for a twice as large local slip,
u2 = u[2β(y)]:

vslip = uslip,2

2
, (25)

v = 1

2

(
u2 + z

∂u2

∂z

)
, (26)

w = − z

2

∂u2

∂y
. (27)

Using (9) and (25), we derive

b⊥
eff = b

‖
eff =

√
b2

0 − 4b2
1. (28)

Thus, the flow becomes isotropic at large b0. One can
demonstrate that the conclusion about the isotropy of the
slip-length tensor in such a situation of a large local slip is
general and valid for any textures (see Appendix A).

The values λ,q,t1 remain the same for a twice as large local
slip length since they depend on the ratio β1/β0 only. As a
result, we obtain

u2 = u = − t1

2π
ln s, v = − t1

4πq
ln s

− zt1 exp(−2πz)[cos(2πy) − q exp(−2πz)]

s
, (29)

w = zt1 exp (−2πz) sin (2πy)

s
. (30)

IV. SIMULATION METHOD

For the modeling of fluid flow in a system of two parallel
plates, we employ the lattice-Boltzmann (LB) method [38].
Lattice-Boltzmann methods are derived by a phase-space
discretization of the kinetic Boltzmann equation,[

∂

∂t
+ v · ∇r

]
f (r,v,t) = �, (31)

which expresses the dynamics of the single-particle probability
density f (r,v,t). Therein, r is the position, v is the velocity,
and t is the time. The left-hand side models the propagation of
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particles in phase space, while the collision operator � on the
right-hand side accounts for particle interactions.

Constructing the lattice-Boltzmann equation, the time t ,
the position r , and the velocity v are discretized. This discrete
variant of Eq. (31),

fk(r + ck,t + 1) − fk(r,t) = �k, k = 0,1, . . . ,B, (32)

describes the kinetics in discrete time (�t) and space units
(�x). We employ a widely used three-dimensional lattice
with B = 18 discrete nonzero velocities (D3Q19) which is
chosen to carry sufficient symmetry to allow for a second-order
accurate solution of the Navier-Stokes equations. Here, for
�, we choose the Bhatnagar-Gross-Krook (BGK) collision
operator [39]

�k = − 1

τ

[
fk(r,t) − f

eq
k (v(r,t),ρ(r,t))

]
, (33)

which assumes relaxation on a linear time scale τ toward a
discretized local Maxwell-Boltzmann distribution f

eq
k . The

kinematic viscosity ν = 2τ−1
6 of the fluid is related to the

relaxation time scale. In this study, it is kept constant at
τ = 1.0.

Stochastic moments of f can be related to physical prop-
erties of the modeled fluid. Here, conserved quantities, such
as the fluid density ρ(r,t) = ρ0

∑
k fk(r,t) and momentum

ρ(r,t)u(r,t) = ρ0
∑

k ckfk(r,t), with ρ0 being a reference
density, are of special interest.

Slip over hydrophobic surfaces is commonly modeled
by the introduction of a phenomenological repulsive force
[40–44]. The magnitude of interactions between different
fluid components and surfaces, as determined by simulation
parameters, allows us to specify arbitrary contact angles
[40,45–47]. Other approaches include boundary conditions
taking into account specular reflections [48–50] or diffuse
scattering [51–53]. The strategy applied for this work em-
ploys a second-order accurate on-site fixed velocity boundary
condition to simulate wall slippage. Here, the velocity at the
boundary is set proportional to the local stress imposed by
the flow field as well as a slip-length parameter adjusting the
stress response. For details on the implementation, we refer the
reader to [54,55]. Local slip lengths are calculated according
to Eq. (10). Varying slip patterns are applied to the x-y plane
at z = 0. Periodic boundary conditions are employed in the
x and y directions, thus reducing the simulation domain to
a pseudo-two-dimensional system. By exploiting the periodic
boundaries, only one single period needs to be resolved. The
Couette flow is driven by applying a constant velocity of
v = 0.1 (in lattice units) in the x-y plane at z = zmax.

The resolution of the simulated system is given by the lattice
constant

�x = H

N , (34)

where N is the number of discretization points used to resolve
the height of the channel. As we consider thick channels, we
choose a height-to-periodicity ratio of H/L = 10.

The number of time steps required to reach a steady state
depends on the velocity of the flow as determined by the
driving acceleration as well as the amplitude and period of
the slip variation. We find that in order to reduce the deviation

from theoretical predicted values below 5%, a domain size of
96 × 1 × 960�x3 is required. For this geometrical setup, with
a shear rate on the order of γ̇ = 1 × 10−4 (in lattice units),
a simulation time on the order of 10 million time steps is
needed to reach the steady state. We compare the theoretical
predictions by measurements of beff obtained from velocity
profiles. The profile of the linear shear velocity is fit by a
linear function in the region far from the surface pattern.
From this fit, the effective slip lengths and shear rate are
determined.

V. RESULTS AND DISCUSSION

In this section, we present the LB simulation results and
compare them with predictions of the continuous theory.

We start by varying the amplitude of cosine perturbations
of the slip length, b1, at fixed b0 = 1. Figure 2 plots simulation
data for b

‖
eff and b⊥

eff as a function of b1/b0. These results show
that the largest possible value of beff/b0 is attained when b1 =
0, i.e., for a smooth hydrophobic surface with b(y) = b0. In this
situation, the effective slip is (obviously) isotropic and equal
to the area-averaged slip b0. When increasing the amplitude
b1, there is a small anisotropy of the flow, and the eigenvalues
of the slip-length tensor decrease. Therefore, in the presence
of a cosine variation in slip length, the effective slip always
becomes smaller than average. This conclusion is consistent
with earlier observations made for different textures [3,56]. To
obtain theoretical values, the linear system, Eqs. (15)–(17), has
been solved numerically by using the IMSL-DLSLTR routine. We
see that the agreement is excellent for all b1/b0, indicating that
our asymptotic theory is extremely accurate, and confirming
the relation (25) between the longitudinal and transverse slip
lengths. Also included in Fig. 2 is the curve calculated with
asymptotic formula (28) obtained in the limit of large b0. Note
that this formula is surprisingly accurate even in the case of
finite b0, except for the texture with b1/b0 = 1/2 (no-slip point
at y = 1/2).

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

b
1
/b

0

b ef
f/b

0

FIG. 2. Eigenvalues of the effective slip-length tensor as a
function of b1 simulated at fixed b0 = 1 (symbols). The longitudinal
effective slip length, b

‖
eff , is shown by circles, and the transverse

effective slip, b⊥
eff , is presented by diamonds. Solid and dashed curves

denote the corresponding theoretical values obtained by numerical
Fourier-series solutions. The asymptotic (isotropic) solution, Eq. (28),
expected in the limit b0 
 L is shown by the dash-dotted line.
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b ef
f/L

(a)
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0
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y

b/
L

(b)

FIG. 3. (a) Effective slip lengths computed for b1/b0 = 0.5,
which correspond to a texture with no-slip lines, vs average slip.
The notations are the same as in Fig. 2. Dash-dotted and dotted lines
show the effective lengths for longitudinal and transverse stripes as a
function of 1/(3φ) calculated with Eq. (3). (b) The cosine profile of
the local slip length with b0/L = 5, b1/b0 = 0.5 (solid curve), and the
stripe profile with φ = 0.06 (dashed line) with the same longitudinal
effective slip lengths.

Figure 3(a) shows the simulation data for effective slip
lengths as a function of an average slip, b0/L, for a texture with
the no-slip point (b1/b0 = 1/2). Also included are theoretical
(Fourier series) curves. The fits are quite good for b0/L up
to 10, but at a larger average slip there is some discrepancy.
The simulation results for b

‖
eff and b⊥

eff give smaller values
than predicted by the theory. A possible explanation for this
discrepancy is that the major contribution to the shear stress at
large b0/L and b1/b0 = 1/2 comes from a very small region
near the no-slip point (as we discuss below). The discretization
error of the LB simulation becomes maximal in this region,
and is particularly pronounced for the velocity gradients of
systems with large effective slip. While we observe deviations
around the no-slip extremal value, the curves converge fast
when stepping away from it, and the excellent agreement
of the measured effective slip suggests that the influence of
discretization errors on the mean flow is negligible at the
resolution used. The asymptotic formula, Eq. (28), predicts
beff = 0. This likely indicates that in this situation it is
necessary to construct the second-order term of expansions
for eigenvalues. At relatively large b0/L, the effective slip

lengths can be well fitted as

b
‖
eff/L � 0.1871 + 0.3175 ln (b0/L + 1.166) ,

(35)
b⊥

eff/L � 0.2036 + 0.158 8 ln (b0/L + 0.583) .

In other words, they scale as ln(b0/L) at large b0/L.

Since the effective slip lengths for a texture decorated with
perfect-slip stripes, Eq. (3), also show a logarithmic growth
(with φ), in order to compare these two one-dimensional
anisotropic textures the theoretical curve for stripes is included
in Fig. 3(a). It can be seen that in the limit of large average
slip, the asymptotic curves for longitudinal effective slip for
stripes and a cosine texture nearly coincide. This means
that both textures generate the same forward flow in the
longitudinal direction. Simple estimates suggest b

‖
eff (β0) �

b
‖
ideal [1/ (3β0)] . Perhaps the most interesting and important

aspect of this observation is that, from the point of view
of the longitudinal effective slip, the “wide” cosine texture
with β0 = 5 taken for our numerical example is equivalent
to the patterns of stripes with the extremely low fraction
of no-slip regions, φ = 0.06 [see Fig. 3(b)]. These results
may guide the design of superhydrophobic surfaces for large
forward flows in microfluidic devices. Note, however, that
in the situation when longitudinal slip for both textures is
similar, the cosine texture shows a larger effective slip in

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

y

u

(a)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

y

du
/d

z (b)

FIG. 4. (a) The velocities and (b) the normal velocity gradients
along the wall for the textures with b1/b0 = 1/3, b0/L = 0.2 (solid
curve, diamonds), b0/L = 1 (dashed curve, circles), and b0/L =
5 (dash-dotted line, crosses). Dotted curves show predictions of
asymptotic formulas, Eqs. (24) and (23).
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the slowest (transverse) direction, as seen in Fig. 3(a). This
means that b

‖
eff/b

⊥
eff < b

‖
ideal/b

⊥
ideal = 2, so that textures with

the cosine variation in the local slip length generate a less
anisotropic flow compared to a perfect stripe geometry. For
this reason, it is not so evident a priori whether cosine textures
could be as efficient as stripes in producing large secondary
flows transverse to the direction of shear. The optimization
of transverse hydrodynamic phenomena in the case of cosine
modulation of the texture will be considered elsewhere.

The flow direction is associated with hydrodynamic pres-
sures in the film, which is related to the heterogeneous slippage
at the wall. Figure 4 shows the profiles of the velocity and
of the normal velocity gradient along the wall for different
β0 and β1/β0 > 1/2. The velocity dependence u (x,y,0) is
smooth, and ∂u

∂z
(x,y,0) is finite for any β0 and β1, unlike the

striped textures with piecewise-constant β [21]. Asymptotic
predictions (24) and (23) are in good agreement with numerical
results and simulation data.

Similar theoretical and simulation results, but obtained for
a texture with no-slip point, β1/β0 = 1/2, are shown in Fig. 5.
In this situation, we find that ∂u/∂z (1/2) = 2πβ0 for all β0.

Finally, we want to stress that a very small region near
the no-slip point gives a main contribution to the shear stress
at large b0/L. For the major portion of the texture far from
this region, we have ∂u/∂z � −1, so that the total shear
stress is zero, and this part of the texture is shear-free. Since
the maximum values of the normal velocity gradients grow

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

u+
u sl

ip

(a)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

y

(2
π 

b 0/L
)−

1 du
/d

z

(b)

FIG. 5. (a) The velocities and (b) the normal velocity gradients
along the wall for the no-slip textures (b1/b0 = 1/2). Other notations
are the same as in Fig. 4.

0 0.05 0.1 0.15
−0.2

0

0.2

0.4

0.6

0.8

b
0
(y−0.5)/L

(2
π 

b 0/L
)−

1 du
/d

z

FIG. 6. The normal velocity gradients for the no-slip textures
with large amplitudes of slip-length variation, b0/L = 1 (dashed
curve), b0/L = 5 (dash-dotted curve), and b0/L = 20 (dotted curve),
as functions of stretched coordinates.

like b0/L, one can expect that a length scale of this small
region is L2/b0 � L, or, equivalently, the curvature radius,
r = (

d2b/dy2
)−1 = L2/

(
4π2b0

) � L, at the no-slip point.
The validity of this assumption is justified in Fig. 6, where
the gradients for several values of b0/L versus stretched
coordinates, b0 (y − 0.5) /L, are presented. The curves are
very close for b0/L � 5. Therefore, the normal gradient
distribution and the dimensionless effective slip length in this
case are controlled by the ratio r/L only. These conclusions
can be extended to any b (y) characterized by a small radius
r = (

d2b/dy2
)−1 � L near the no-slip point and by a large

slope, of the order of L/r 
 1 or larger, far from it.

VI. CONCLUSION

We have investigated shear flow past a superhydrophobic
surface with a cosine variation of the local slip length, and
we have evaluated the resulting effective slippage and the flow
velocity. We have found that the cosine texture can provide a
very large effective (forward) slip, but it generates a smaller
transverse velocity to the main (forward) flow than discrete
stripes considered earlier. Our approximate formulas for
longitudinal and transversal directional effective slip lengths
are validated by means of lattice-Boltzmann simulations.
Excellent quantitative agreement is found for the effective
slippage as well as for the flow field. Slight deviations of the
observed velocity gradient close to the no-slip extremal value
can be explained by discretization errors.
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APPENDIX: EFFECTIVE SLIP FOR A FLOW PAST
STRONGLY SLIPPING ANISOTROPIC PATTERNS

In this appendix, we give some simple arguments showing
that the flow becomes isotropic in the case of large local slip,
βmin = min [β (y)] 
 1. In this situation for arbitrary local slip
length β (y), the leading-order beff can be obtained directly
from the local slip boundary condition, Eq. (6), without the
need to solve the Stokes equations. Indeed, if β 
 1, Eq. (6)
requires that the velocity at the surface is large,

|uslip + u1τ (x,y,0)| ∼ βmin 
 1,

but the normal gradient is finite, |∂u1τ (x,y,0)/∂z| ∼ 1. This
can be fulfilled only if |uslip| ∼ βmin 
 1, |u1τ | ∼ 1. One can
then divide Eq. (6) by β to obtain

z = 0 :
uslip

β(y)
− ∂u1τ

∂z
− el = O

(
β−1

min

)
.

Finally, by averaging the last equation over the texture
periods, and by using Eqs. (4) and (9), we can easily derive an
expression for a leading-order effective slip:

b⊥
eff � b

‖
eff � L

[∫ 1

0

dy

β (y)

]−1

. (A1)

It can be verified that our result, Eq. (28), is consistent with
(A1). Note that the expression

b
‖
eff � b⊥

eff �
(

φ

b0
+ 1 − φ

b1

)−1

, (A2)

which has been obtained for stripes with b0,b1 
 L [30] and
is similar to the addition rule for resistors in parallel, also
satisfies Eq. (A1).
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