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The combined effect of two modes of electroconvection, i.e., (a) the electro-osmotic flow of the second kind in-
duced by a curved membrane surface and (b) electrokinetic instability, is studied numerically. Both physical mech-
anisms are responsible for electric current enhancement to the surface, and these modes are strongly nonlinearly
coupled. For the limiting regimes, their resonant interaction near the threshold of instability with a corresponding
resonantly amplified current enhancement is found. For the overlimiting regimes, inside the unstable region, their
interaction becomes more complex with negative “sideband” and positive “subharmonic” resonant interactions.
Wall corrugation can still be in resonance with the unstable modes. At some wave numbers of corrugation, these
two mechanisms compete and electrokinetic instability can even be completely suppressed by the wall corrugation.
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I. INTRODUCTION

Extended polarization near a charge-selective surface (a
membrane, electrode, or system of micro- or nanochannels)
can drive a hydrodynamic flow if a tangential electric field
exists and, hence, the local velocity is a product of the normal
and tangential components of the electric field. In particular, (a)
a surface with curvature can be responsible for the existence of
both field components (so-called Dukhin’s mechanism [1]) and
(b) the extended polarization layer near a flat charge-selective
surface can be unstable to small perturbations (electrocon-
vective or electrokinetic instability, which theory was first
advanced by Rubinstein and Zaltzman [2]). There is also bulk
electroconvective instability, which pertains to the flow in-
duced by the action of the mean electric field upon the residual
space charge in the macroscopic regions of a locally quasielec-
troneutral strong electrolyte; see [3], and the references therein.

It is obvious that a geometrical surface inhomogeneity can
essentially influence electroconvective instability and cause
electric current enhancement to the surface. Rubinstein and
Zaltzman’s [2] estimation for a model system of equations
is that a 10% distortion of the flat surface results in a 30%
enhancement in the current to the surface.

In this paper, we present a numerical study of the full
Nernst-Planck-Poisson-Stokes system in the region between
flat and corrugated membranes under a fixed potential drop.
The dependence of the ion flux on the wave number of
corrugation q and its amplitude a has been investigated for
the limiting and overlimiting regimes. Subject to the system
parameters, two modes of electroconvection can either weaken
or amplify the electric current enhancement to the surface.

II. FORMULATION

A symmetric, binary electrolyte with an equal diffusivity of
cations and anions D̃, dynamic viscosity μ̃, and permittivity d̃

is considered. The two-dimensional solution between an upper,
ideal semiselective ion-exchange membrane at ỹ = L̃ and a
corrugated lower membrane at ỹ = h̃(x̃) is studied. Notations

with tildes are used for the dimensional variables, as opposed
to their dimensionless counterparts without tildes; {x̃,ỹ} are the
coordinates, where x̃ is directed along the upper membrane’s
surface and ỹ is normal to that surface; and {Ũ ,Ṽ } are the
correspondent velocity components.

The flow is assumed to be Stokes creeping flow. Then the
system of equations is

ν2∇2� = c− − c+ = −ρ, (1)

∇4� = κ

ν2

[
∂

∂y

(
ρ

∂�

∂x

)
− ∂

∂x

(
ρ

∂�

∂y

)]
, (2)

∂c±

∂t
+ U · ∇c± = ±∇ · (c±∇�) + ∇2c±. (3)

Here, U = (∂�/∂y, − ∂�/∂x) is the velocity vector. The
system is taken in a dimensionless form with L̃ as the
characteristic length, L̃2/D̃ as the characteristic time, and μ̃ as
the dynamical characteristic value; the potential �̃0 = R̃T̃ /F̃

is taken as the characteristic potential, the bulk concentration of
the electroneutral solution is t = 0, and c̃0 is the characteristic
concentration. The parameter κ = d̃�̃2

0/μ̃D̃ appears as a
coupling coefficient between the hydrodynamics and the
electrostatics. It is essential that the coupling coefficient
depends only upon the physical properties of the electrolyte.
ν is the dimensionless Debye length, ν = λ̃D/L̃ and λ̃D =√

d̃�̃0/F̃ c̃0, R̃ is the universal gas constant, T̃ is the absolute
temperature, and F̃ is the Faraday constant.

The boundary conditions at the membrane surfaces are

y = h(x) : c+ = p, − c− ∂�

∂n
+ ∂c−

∂n
= 0,

(4)
U = V = 0, � = 0,

y = 1 : c+ = p, − c− ∂�

∂y
+ ∂c−

∂y
= 0,

(5)
U = V = 0, � = 	V,

where the normal vector n is directed from the surface into
the liquid. The first pair of conditions, prescribing an interface
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concentration equal to that of the fixed charges inside the
membrane, is asymptotically valid for large p and was first
introduced by Rubinstein (see, for example, [4,5], and the
references therein). These conditions, prescribing an interface
concentration equal to that of the fixed charges inside the
membrane, p, are asymptotically valid for p � 1 and amount
to disregarding the co-ion invasion of an ideally semiselective
membrane. Hence, the second pair of conditions means that
the membrane is ideally permselective, and, thus, there is no
anion flux. The third pair is the usual no-slip condition, and the
last one fixes the potential at the lower membrane’s surface to
be zero and specifies the potential drop across the membranes.

The density of the electric current through the curved
surface y = h(x) is determined by

j = 1

4

(
c+ ∂�

∂n
+ ∂c+

∂n

)
, (6)

with
∂

∂n
= ∂x

∂n

∂

∂x
+ ∂y

∂n

∂

∂y
= − hx√

1 + h2
x

∂

∂x
+ 1√

1 + h2
x

∂

∂y
,

hx ≡ ∂h

∂x
. (7)

Taking into account that � = const along y = h(x), the second
boundary condition (4) turns into

−c− ∂�

∂y
+ ∂c−

∂y
− hx

∂c−

∂x
= 0. (8)

For the current density j , the fact that c+ = const along the
membrane is utilized:

j = 1

4

(
c+ ∂�

∂y
+ ∂c+

∂y

) /√
1 + h2

x. (9)

A periodicity with period q in the x coordinate is assumed,
and most of the calculations were done for simple sinusoidal
perturbations,

y = h(x) = a cos qx. (10)

It is convenient to describe the final solution, as t → ∞,
by averaging over the period of corrugation, 2π/q, electric
current 〈j 〉, and amplitude of the electric current jmax − jmin,
as follows:

〈j 〉 = 1

l

∫ l

0
j (x) dl = q

2π

∫ 2π/q

0
j (x)

√
1 + h2

x dx,

(11)
jmax − jmin = max

0<x<l
j (x) − min

0<x<l
j (x) at t → ∞.

The geometry is shown in Fig. 1.
The problem is described by five dimensionless parameters:

the potential drop 	V , the Debye number ν, which is a small
parameter of the system, the coupling coefficient between the
electrostatics and the hydrodynamics κ , the wave number of
corrugation q, and its amplitude a. The dependence on the
concentration p for the overlimiting regimes is practically
absent, so p is not included in the parameters mentioned.

III. NUMERICAL SOLUTION

The direct numerical simulation of the system (1)–(10),
without any simplification, is implemented by applying the

2π / q

L = 1

a

FIG. 1. Geometry of the flow: the upper flat and lower curved
surfaces are ideally permselective membranes with a potential drop
	V between them. The extended space charge (ESC) region is located
near the lower membrane

Galerkin pseudospectral τ method. A periodic domain along
the membrane surface allows the utilization of a Fourier series,
exp (inkx), in the x direction. Chebyshev polynomials Tm(y)
are used in the transverse direction y. Eventually, the physical
variables take the form

�=
M∑

m=0

N∑
n=−N

�mne
inkxTm(y),

� =
M∑

m=0

N∑
n=−N

�mne
inkxTm(y), c±=

M∑
m=0

N∑
n=−N

c±
mne

inkxTm(y).

The reality of the solutions implies �m,−n = �̄m,n, �m,−n =
�̄m,n, and c±

m,−n = c̄±
m,n, where the barred quantities are com-

plex conjugates. The basic wave number k characterizes the
length of the considered domain, 2π/k, while q characterizes
the “density” of the corrugation. The main difficulty in dealing
with the electrokinetic instability is to resolve the structure of
the unknowns close to the electrodes [5]. The accumulation
of zeros of the Chebyshev polynomials near the walls, along
with the fact that there are rather a large number of them,
allows properly resolving the thin space charge regions. The
number of Fourier modes and Chebyshev polynomials were
taken, respectively, to be N = 64–256 and M = 128–512; the
accuracy of the calculations and the convergence of the code
were monitored by changing N and M . The Chebyshev grid
enabled us to concentrate the grid points near the boundary
layers, although not in an optimal way.

The numerical solution of Eqs. (1)–(3) in a complex domain
with the conditions (4) at the boundary of this domain can
be obtained by using (a) boundary-fitted grids or (b) the
immersed-boundary method and performing a simulation in
simple rectangular domains, which contain the original domain
with a complex geometry. There are many different variations
of the immersed-boundary method. In the present paper, some
ideas of [6–8] for the Navier-Stokes system are adapted
for our Nernst-Planck-Poisson-Stokes system, given by
Eqs. (3)–(10).
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The fundamental idea is to transform the domain into a
rectangular one, such that the lower artificial boundary y =
hmin is flat instead of wavy, as was the original boundary
h(x). To impose the conditions (4) on the wavy boundary,
source terms for �, �, c+, and c− are added to the governing
equations (1)–(3). The purpose of these terms is to impose the
boundary conditions (4) on the immersed boundary y = h(x).
The main advantage of this method is that it is based on the
same numerical codes as those used in [9] for a rectangular
region. The main disadvantage, however, is the difficulty in
resolving the local double-ion layer and extended space charge
regions near the corrugated wall with sharp variations of the
unknowns. These are especially pronounced for the limiting
and overlimiting regimes.

Let us enumerate the basic ideas and steps of this method.
Inside our calculations, we stretched the variables x and y

in such a way that the flat artificial boundary was located
at y = 0 and the upper one was located at y = 1. For our
eventual presentation of the results, we returned to the previous
independent variables.

Substituting the finite Fourier-Chebyshev series into the
governing system and using the Lanczos procedure along
with the artificial source terms to satisfy the boundary
conditions led to a system of coupled ordinary differential
equations for the unknown Galerkin coefficients. To obtain
these equations, all nonlinear algebraic operations were
executed in physical space, at the collocation points, while
the derivatives with respect to both spatial variables x and
y were calculated in the space of the Galerkin coefficients.
The derivatives of the Chebyshev polynomials were calculated
by means of the collocation matrix method (see [10]). The
connection between the collocation points and the Galerkin
coefficients is performed by means of the fast discrete cosine
transform.

(1) With the charge density ρ from the previous time step
t , we can find the solution � of the boundary problem for the
Poisson equation as follows.

(1.1) Let us present � as a superposition, � = F +
�̂, where F obeys the equations in the rectangular
region

∂2F

∂x2
+ ∂2F

∂y2
= − ρ

ν2
, F (0) = 0, F (1) = 	V, (12)

and �̂ is the correction term which is related with the source
term. The problem for the rectangular region (12) was solved
numerically using the Galerkin method [9].

(1.2) In order to find the correction term �̂, the following
set of subproblems was considered:

∂2�̂n

∂x2
+ ∂2�̂n

∂y2
= δ(x − xn)δ(y − hn),

(13)
�̂n(0) = �̂n(1) = 0, n = 0,1, . . . ,N,

where δ(x) and δ(y) are Dirac delta functions which were taken
at the discrete set of points xn and hn = h(xn) at the boundary
y = h(x). The problems (13) can be solved either analytically
or numerically; we chose a numerical method.

(1.3) Our solution is a superposition

� = F + �̂ = F +
N∑

n=0

An�̂n, (14)

where An are unknown constants, which were found from
the requirement that � vanishes at the discrete points of the
boundary y = h(x),

N∑
n=0

An�̂n = −F at the points xn,hn. (15)

The boundary y = h(x) was fixed in time, hence, the matrix
of the linear algebraic system (15) was also fixed and can be
inverted only once, at the beginning of calculations.

(2) With the charge density ρ and potential � known at the
time level t , the biharmonic equation (2) is ready to be solved.
Because the biharmonic equation can be presented as a system
of two Poisson equations, which allows it to be solved by the
above-described algorithm, we omit any detailed description
of this step.

(3) The Eqs. (3) are nonstationary equations and, hence,
their solution is different from that described above. The ideas
of [6–8] were employed as follows.

(3.1) As a provisional step to find the solution at the next
time level t + 	t , the equation (3) for positive ions was solved
in the rectangular region with the boundary conditions at y =
0 and y = 1, c+ = p. The time integration was performed
explicitly.

(3.2) The solution found was then corrected: c+ was forced
to be equal to c+ = p at the set of points x = xn and y = hn.

(3.3) An unknown source term fC+ was added to Eq. (3),

∂c+

∂t
+ U · ∇c+ = ∇ · (c+∇�) + ∇2c+ + fC+ . (16)

The corrected solution is used to find the source term from the
equation

fC+ =
{

{U∇c+ − ∇(c+∇�) − ∇2c+} at the boundary points xn,hn;

0 at all other points.
(17)

Here, it is taken into account that the derivative ∂c+/∂t = 0 at
y = h(x).

(4) The procedure for finding c− was rather similar to the
aforementioned one; it also included the source term fC− , but
technically was more complex because the boundary condition

of the first kind was changed to a boundary condition of the
third kind (8).

(5) A special semi-implicit method was developed to
integrate Eq. (16) in time with the known source terms fC+

and fC− . The ion transport equations for the concentrations
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FIG. 2. (Color online) Marginal stability curve for ν = 10−3 and
κ = 0.1 with a critical point at 	V∗ = 29.5 and k∗ = 4.63. Inset:
linear response to the corrugation for different 	V/	V∗: (1) 0.93,
(2) 0.99, and (3) 1.00; this response becomes infinitely large at q = k∗
and 	V = 	V∗.

are integrated and c±
mn(t + 	t) are found for the next time

level t + 	t . The second-order Adams-Bashforth scheme for
nonlinear terms and the Crank-Nicholson scheme for linear
terms were used.

Comment No. 1. Since the function y = h(x) does not
necessarily coincide with the grid points, the conditions on

the wavy boundary were extended to the grid points by means
of biquadratic interpolation.

Comment No. 2. Before transforming the functions �, �,
and c± to Galerkin space, they were smoothed by multiplying
them by a narrow distribution function. This transform was
adopted from [6],

�smooth =
∑
i,j

�(xi,yj ) e−ax (x−xi )2−ay (y−yj )2
,

and similarly for the other functions, where (xi,yj ) were the
grid points near the wavy boundary y = h(x), and ax and ay

were properly chosen numbers. The Galerkin representation
of the correction functions was also filtered to suppress the
highest modes and thus reduce the unnatural oscillations that
arose due to singularities in those functions.

The results of the calculation are presented for the Debye
number ν = 10−3 and for a typical value of the coupling
coefficient κ = 0.1; p = 5 is kept.

IV. RESULTS AND DISCUSSION

For the limiting and overlimiting regimes, there is a thin
layer of extended space charge (ESC) region O(ν2/3) (see [5]),
which behaves like a free surface [9]. If the ESC layer is thinned
by a localized perturbation, then the electric field E increases
and the electrostatic pressure in the layer increases as E2. This
localized region of high pressure moves liquid away from the
spot and creates a vortex pair near the membrane’s surface.
This event, in turn, causes a thinning of the ESC region. On the
other hand, the diffusion in the electroneutral region stabilizes
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FIG. 3. (Color online) Streamlines of electroconvective vortex pairs for different amplitudes of corrugation: (a), (d) a = 0.05, (b), (e) a =
0.1, and (c), (f) a = 0.2, and for the fixed wave number of corrugation q/k∗ = 0.2. (a)–(c) correspond to the subcritical case 	V/	V∗ = 0.90,
and (d)–(f) correspond to the supercritical case 	V/	V∗ = 1.02.
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FIG. 4. (Color online) (a) Space charge distribution ρ(x,y) along a curved boundary for the subcritical regime, 	V = 20 (Dukhin’s
mechanism of electroconvection). Darker regions correspond to larger charge densities. (b) Charge profiles along the y coordinate for the
different cross sections 1, 2, and 3.

the disturbances, which decay for the limiting regimes and
grow for the overlimiting ones. This strong mechanism affects
the inner structure of the ESC region and manifests itself even
for flat surfaces.

The main influence of the curved boundary is expected
in the diffusion region. As in Dukhin’s electro-osmotic
phenomenon of the second kind (see [1,11,12]), screening of
the normal field changes the extended polarized region along
the curved surface and produces a varying normal field along
the surface. This variation creates electro-osmotic velocity
near the curved surface, and an inhomogeneity of that velocity
along the membrane produces electroconvective vortices. Note
that the inner structure of the ESC layer [11] is untouched by
the curved boundary.

The physical mechanisms of both modes of electroconvec-
tion are very different, thus their interaction is expected to be
nontrivial.

The transition from the limiting regimes to the overlimiting
ones can be caused, in particular, by electrokinetic instability,
and, in this case, the transition parameters are determined by
the critical values of the threshold of this instability. (Regarding
other mechanisms of the transition to the overlimiting currents,
see [3,13,14].) The marginal stability curve was calculated
numerically, considering sinusoidal perturbations in the x

direction and expanding the eigenfunctions in Chebyshev
polynomials in the y direction, eventually solving the resulting
matrix eigenvalue problem by the QR algorithm. The linear
stability results were tested by using another method [15]

and are presented in Fig. 2 using the critical parameters
	V∗ = 29.5 and k∗ = 4.63, which separate the limiting and
overlimiting regimes. The potential drop and the wave number
will be referred to these values.

Subcritical regimes, 	V < 	V∗. At the flat membrane’s
surface a = 0, for the subcritical case (limiting regimes), the
solution is one dimensional and uniform along the membrane,
∂/∂x = 0, and, hence, the tangential electric field is absent and
there is no hydrodynamic motion. The flux of ions is carried out
by diffusion and electromigration. At a 
= 0, the uniformity in
the x direction is violated and the corrugation creates a tangen-
tial field along with hydrodynamic motion, and an additional
convective mechanism of current transfer is established.

This enhancement can be qualitatively captured using the
same linearized statement as for the stability problem; see the
inset of Fig. 2. The amplitude jmax − jmin is in phase with
the wall corrugation, i.e., a maximum of h(x) corresponds
to a maximum of the current amplitude, and vice versa. The
linear response to the wavy boundary was calculated from the
linearized system of equations; this response is finite outside
of the criticality and has a maximum at q = k∗. The amplitude
of this maximum becomes infinitely large as 	V/	V∗ → 1.
For 	V > 	V∗, the linear approach is not applicable.

The restrictions of the linear theory can be removed by
simulation of the full nonlinear system (3)–(11). The typical
calculations are illustrated in Figs. 3(a)–3(c), where the stream-
lines of the electroconvective flow are presented for different
amplitudes of corrugation a and a fixed wave number q.
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FIG. 5. (Color online) (a) Average electric current 〈j〉 and (b) current amplitude jmax − jmin vs normalized wave number of corrugation
q/k∗ and different 	V/	V∗: 	V/	V∗ = (1) 0.90, (2) 0.96, (3) 1.02, and (4) 1.08, for the fixed amplitude of corrugation a = 0.05.

The dependence of the average electric current 〈j 〉 and
current amplitude jmax − jmin on the wave number q at a
fixed amplitude a = 0.05 shows the maximum of flux when
the wave number of corrugation coincides with the critical
wave number of electrokinetic instability, q = k∗, which is
in qualitative accordance with the prediction of the linear
theory (see Fig. 5, lines 1 and 2). Moreover, for small

amplitudes, a < 0.005, and reasonably far from the critical
point, the linear analysis is in quantitative agreement with
the nonlinear numerical simulations. The maximum becomes
more pronounced at the critical potential drop, 	V = 	V∗
(Fig. 5, line 3); unlike the linear theory, this maximum is finite.
The dependence of 〈j 〉 on the amplitude a for the limiting
regimes is monotonic; see Fig. 6, lines 1 and 2. The dash-dotted
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FIG. 6. (Color online) Averaged current 〈j〉 vs corrugation amplitude a for q = k∗ and different 	V/	V∗: (1) 0.90, (2) 0.96, (3) 1.02, and
(4) 1.08. The dashed line stands for maxima of 〈j〉. Dash-dotted lines corresponds to the prediction of the linear theory.

straight line is the response predicted by the linear theory. The
limitation of the linear theory with very small amplitudes can
be seen from the figure. For large a, there is a saturation of the
current on amplitude.

The space charge distribution has a sharp boundary with a
diffusion region, O(ν2/3) (see [5]). This boundary for the wavy
membrane and large enough amplitude of corrugation has a
spikelike profile with a cusped apex (see Fig. 4), where h =
0.05 exp [−15(x − π

8 )3/2]. The angle of the cusped apex can
be approximately determined; it practically does not depend
on the problem parameters and is about 100◦ with accuracy
±10◦. (For a small amplitude of corrugation, this boundary
remains smooth and no cusped apex is present.)

Supercritical regimes, 	V > 	V∗. Even at a = 0, the
mentioned one-dimensional solution, uniform along the mem-
brane, is unstable. This instability causes electroconvection
which sustains a tangential electric field and, thereafter, a hy-
drodynamic liquid flow. If a 
= 0, that is, if two mechanisms of
the electroconvective flow are involved, then the behavior for
the overlimiting regimes becomes much more sophisticated.

Such an interaction between the instability and the
wall corrugation is a well-known phenomenon for other
hydrodynamic flows. While the inset of Fig. 1 suggests that the
two mechanisms interact resonantly to produce the maximum
vortex intensity and ion current when the wave number q of
the curved surface coincides with the critical wave number k∗
of the instability, classical nonlinear dynamics theory suggests
that resonant positive interaction can still occur at other wave
number ratios with local current and vorticity maxima or,
more interestingly, minima, because of a negative resonant

interaction. In particular, one expects subharmonic resonance
at q/k∗ = 1/2 and, perhaps, when the ratio is a rational
number. We will explore these resonant structures numerically
by varying the corrugation amplitude and wave number.
For a liquid film falling on an inclined plane at small
Reynolds numbers, the corrugation suppresses the surface
instability [16]. For large Reynolds numbers, this interaction
becomes more complicated [17] and can both stabilize and
destabilize the flow. The Tollmien-Schlichting instability in
the boundary layer can either be suppressed or intensified
by wall corrugation, depending on its parameters [18]. For
river shock waves, the interaction between the topography of
the river’s bottom and the surface instability can completely
change the flow regime [19].

Both electroconvective modes can weaken or amplify each
other. The streamlines of the flow for different amplitudes
a and a fixed wave number q for the overlimiting regimes
are presented in Figs. 3(d)–3(f). They are very different from
those presented in the same figure for the limiting regimes
presented in Figs. 3(a)–3(c). For a small amplitude a = 0.05
and a long enough corrugation, there is mainly a manifestation
of the electrokinetic instability, but unlike the flat channel
case, the vortices of the electrokinetic instability are distorted
by the corrugation. One sees in Fig. 6 that for q = k∗ (1 : 1
resonance), the interaction is increasingly negative at larger
overcritical conditions, i.e., with increasing amplitude a, the
average current 〈j 〉 is decreasing.

The vortex distribution along the curved surface at different
wave numbers q and at a fixed amplitude a is shown in
Fig. 7. For small q, the behavior is unsteady and irregular, but
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FIG. 7. (Color online) Streamlines of vortex pairs for different
wave numbers of corrugation: q/k∗ = (a) 0.1, (b) 0.8, and (c) 2.0, and
the fixed amplitude a = 0.05 for the overlimiting case 	V/	V∗ =
1.02.

approaching the instability’s asymptote at vanishing amplitude
and finite overcritical voltage. The corresponding snapshot is
presented in Fig. 7(a). With increasing wave number of corru-
gation, the picture becomes steady and regular; the instability
and corrugation balance each other [see Fig. 7(b)]. In Fig. 7(c),
for sufficiently large q, the electrokinetic instability eventually
succumbs to the corrugation. For larger q, the behavior does
not change and the corrugation suppresses the instability.

The behavior at intermediate wave numbers q is worth
more discussion. The electric current distribution along the
membrane is shown in Fig. 8. At small q [Fig. 8(a)], the
corrugation creates an envelope in the current distribution,
much like Floquet instability for periodic waves; see, for
example, [20]. With increasing q [Fig. 8(b)], the two modes of
electroconvection balance each other and the resulting current
amplitude jmax − jmin is very small. With further increase
of the wave number, the corrugation’s mode prevails over
the instability’s mode, and the reaction of the flow to the
corrugation is sinusoidal.

The dependence of the average electric current 〈j 〉 on
the wave number q at a fixed amplitude a complements the
description (see Fig. 5, lines 3 and 4). For very small q, q/k∗ <

0.1, the averaged current is not sensitive to the corrugation and
is determined entirely by the instability. With increasing wave

0

1〈 j
 〉

0

1

0

1

−10π π0 10
0

1

k
*
⋅x

(a)

(b)

(c)

(d)

FIG. 8. (Color online) Electric current distribution along the
membrane, j (x), for different wave numbers of corrugation q and
a fixed amplitude a = 0.05: q/k∗ = (a) 0.1, (b) 0.4, (c) 0.6, and
(d) 0.8. Overlimiting regime, 	V/	V∗ = 1.02.

number, the corrugation suppresses the instability, achieving
minima at q/k∗ ≈ 0.3 and q/k∗ ≈ 0.4. It is surprising that
with a further increase of q, the average current 〈j 〉 shows a
maximum when the wave number of corrugation coincides
with either the critical wave number of the electrokinetic
instability k∗ or its subharmonic 1

2k∗. At these points, the
corrugation becomes more efficient for ion transfer and both
modes strengthen each other. If the maximum at q = k∗ stems
from the one for the limiting regimes (see Fig. 5, lines 1
and 2), then the maximum at the subharmonic wave number
arises only for the overlimiting regimes. Summarizing, one
can say that “sideband corrugation” weakens instability, while
subharmonic corrugation amplifies it. A further increasing in
q, q > k∗, leads to the dominance of the curvature-induced
Dukhin’s vortices over the instability.

The dependence on amplitude for the overlimiting regimes
is not monotonic; it also has a maximum for some amplitude.
With increasing 	V/	V∗, this maximum is shifted to smaller
amplitudes; see Fig. 6, lines 3 and 4.

The general trend of this paper has been to investigate
the combined effect of two modes of electroconvection: the
electro-osmotic flow of the second kind induced by the mem-
brane surface’s curvature (Dukhin’s mechanism) and the
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electrokinetic instability (Rubinstein-Zaltzman’s mechanism).
It was found that both modes can suppress or intensify each
other. Depending on the system parameters, some particular
parts of the channel can contain vortices and some can
be stable. This phenomenon can be used in micro- and
nanochannels with nonuniform surfaces.
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