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Abstract

Our goal is to study theoretically the effect of deformation on the exponentially decaying interaction of two elastic solids separated
liquid film. The deformed shape of the surfaces and the contribution of the elasticity to the total force, i.e., an additional term presen
elastic bodies, are calculated from continuum elastic theory via a new asymptotic technique. Both the deformation and the co
of the elasticity to the force are found to be significant on the length scale over which the surface force acts. The surface defo
exponentially decaying with a decay length equal to that of the original surface interaction. It is especially important for large and/o
changing force. The contribution of the elasticity is also exponentially decaying, but with half the decay length. Its strength depen
elastic constants and size of the solids and on the magnitude and gradient of the original surface force. Depending on how the s
detected, it can appear either as an attractive or as a repulsive contribution to the force. Our results open the possibility of recalc
measured force to the interaction free energy.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Most theoretical and experimental studies of surf
forces, or the forces acting between microscopic or e
macroscopic bodies when they are in close proximity, h
been conducted assuming that the surfaces are rigid
However, the solids are usually elastic. Therefore, they
be deformed during the interaction. While the elastic d
tortion of solids at contact (adhesion) has been intensi
studied by invoking either infinitely short-range [2–5]
finite-range [6–8] surface forces, precontact deformatio
not predicted by classical theories and has attracted m
less attention, although there are some theoretical resul
repulsive interactions [9,10], as well as some numerical
culations [11].

In the previous paper [12], we adopted simplifying a
proximations, which led to explicit asymptotic formulas f
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deformation caused by power-law attractive forces. The
ymptotic expressions for deformation have been use
calculate analytically the interaction force between ela
bodies and to demonstrate that it differs dramatically fr
the force in the case of rigid surfaces. The main poin
this, the second paper, will be to extend this approach to
case of exponentially decaying interaction. This type of
teraction represents both the repulsive (double-layer [13
and hydration [15]) and the attractive (hydrophobic [16–1
forces, and is therefore important for understanding var
phenomena, such as adhesion, cavitation, and colloida
bility. The current work is concerned only with deformati
away from contact, or precontact deformation, and give
simple but accurate description of the exponentially dec
ing interaction of elastic surfaces.

Our paper is arranged as follows: In Section 2 we pre
a brief description of the main experimental techniques.
system and approach are defined in Section 3, and th
ymptotic solution for deformation is given in Section 4. T
results of our calculations of interaction forces between e

http://www.elsevier.com/locate/jcis
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tic bodies are presented in Section 5. We conclude in S
tion 6.

2. Force measurement technique

As before [12], we will examine two main experimen
devices, the surface force apparatus (SFA) and the at
force microscope (AFM). We will also consider a thi
method, the so-called measurement and analysis of su
interaction and forces (MASIF) technique.

The SFA [19] uses mica surfaces, with a radius of c
vatureR ∼ 1–2 cm, glued to polished silica discs with
epoxy resin. One surface is mounted at the end of a dou
cantilever force measuring spring. The surface separati
determined by multiple-beam interferometry, which also
lows surface deformation to be monitored in situ.

The AFM [20] uses so-called colloid probes ofR ∼ 1.5–
5 µm, glued or melted to the end of a single microfabrica
cantilever. In the case of rigid bodies the absolute separa
is inferred from the deflection vs piezo position behav
and the contact is assumed to take place at “constant
pliance,” i.e., when the deflection of the cantilever becom
linear with respect to sample displacement. The main
ficulty with AFM measurements on deformable system
that there is no sharp transition between contact and
contact because deformation occurs prior to contact.
means that the zero of separation cannot be determin
the same ways as for rigid bodies. However, several m
ods have been used in attempts to resolve the problem
some special cases [21–25].

In the MASIF [26] spherical surfaces (R ∼ 1 mm) are
mounted at the end of a piezoelectric bimorph, which p
mits the spring bending to be measured electronically.
surface separation can then be calculated from this ben
as in the AFM.

3. Analysis

3.1. Model

We consider two smooth elastic spheres with radiiR1 and
R2, and a situation in which the gap between the sphere
small compared to the smaller of their radii. In this appr
imation, the interaction of two spheres (AFM, MASIF)
equivalent to the interaction of a sphere with a plane (AF
which is in turn the same as for two crossed cylinders
equal radii (SFA) [27–30]. The deformed and undeform
surfaces of the two spheres are sketched in Fig. 1. The
deformed spherical surfacẽH can be approximated by
paraboloid,

(1)H̃ (r)= h+ r2

2R
,

whereR is the reduced radiusR1R2/(R1 +R2), andh is the
distance between the undeformed spheres. Here and b
e

-

Fig. 1. Schematic of the deformation of two elastic spheres separate
a thin film. Curves 1 and 2 denote the undeformed surfaces and the a
deformed surfaces, respectively.

we focus only on the precontact situation, so thath is as-
sumed to be positive. The deformed gap profile can be g
locally as

(2)H(r)= H̃ (r)+w(r),
wherew(r)=w1(r)+w2(r) is the sum of the deformation
of the two surfaces from their original shape. A deformat
toward the opposing surfaces is defined as negative, and
away from it as positive.

In order to determine the deformation we shall follo
the ideas of the Hertz contact theory of linear elasticity [
and also the developments in [6,9,12,32,33], whose aut
studied deformation due to the action of surface and hy
dynamic forces. The normal displacement of the surface
point r off the central axis under a given disjoining press
Π(r) is [32,33]

(3)w(r)= 4θ

π

∞∫
0

Π(y)φ(r, y) dy,

where the parameterθ in (3) is defined as

(4)θ = 1− ν2
1

E1
+ 1− ν2

2

E2
,

ν1,2 is Poisson’s ratio, andE1,2 are Young’s modulus of elas
ticity for spheres 1, 2. The Green’s function kernel is giv
by

(5)φ(r, y)= y

y + r K
[

4ry

(r + y)2
]
,

whereK is the complete elliptic integral of the first kind
The functionφ(r, y) is in reality a functionψ of a single
variableZ = y/r.
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3.2. Interaction forces

The exponentially decaying pressure between un
formed surfaces̃Πe can be described as

(6)Π̃e(H̃ )= B

2πλ
exp

(
− H̃
λ

)
,

with the coefficientB and the decay lengthλ. This pressure
corresponds to an electrostatic (repulsive) component o
DLVO model [13,14]. In this caseB = 4πεε0ψ2

0/λ, where
εε0 is the dielectric constant,ψ0 is the surface potential, an
λ is equal to the Debye screening lengthκ−1. Hydration
forces [15] can also be a model with a single exponen
decay with much shorterλ and positiveB. Finally, the hy-
drophobic attractive force can in general be modeled
single [17,18,34,35] or a double exponential function [1
In this case, for the longer range partB is on the order o
−10−3 N/m, andλ can be as large as 30 nm. For the sho
range partB is roughly−0.5 N/m andλ= 1 nm.

For rigid solids, the interaction forcẽF(h) is connected
with the interaction free energỹE(h) between two plana
half-spaces by the Derjaguin approximation [27,28]:

(7)F̃ (h)= 2πR × Ẽ(h).
Interaction free energy is a universal quantity character
of the surfaces and the fluid, which, according to (7), can
derived from the measurements of the forces between
bodies:

(8)F̃ (h)= 2πR

∞∫
h

Π̃(H̃ ) dH̃ = BR exp

(
−h
λ

)
.

When the measurements deviate from theory, an extra f
is inferred to be present.

Mathematically, the derivation of the Derjaguin appro
imation (7) uses the possibility of expressing̃Π(r) as
Π̃(H̃ (r)).

3.3. Elastic constants

The effective elastic constants of the mica–glue sys
may be easily calculated from the radius of the con
zone and the pull-off force measured in the SFA [36,3
The measured values of the elastic constants, recalcu
to θ , are large, on the same order as that of silica,θ =
1.9× 10−11 m2/N, and only a factor 3 or 4 less than that
mica, θ = 6.7 × 10−12 m2/N. The average of all the mea
surements [38] is(3.2 ± 1.3) × 10−11 m2/N. The recent
development of the reflection SFA technique [39], howe
makes it possible to work with much softer surfaces. T
MASIF and AFM experiments have already been perform
with soft materials, such as, for example, solid polym
[25,35]. In this caseθ can be as large as 5.5× 10−10 m2/N.
d

4. Asymptotic solution

4.1. Deformation profile

The solution of the system of equations (2) and (3)
the equation describing pressure between the surfacesH
andw in general requires a numerical method. However,
small deformation (w
 h), these equations can be solv
by an asymptotic method. In this case, in the first appr
mation the deformation can be determined via the pres
profile in the absence of deformatioñΠ(H̃ ) [32,33]. Strictly
speaking, our problem has two characteristic length sc
h andλ, so that some additional restrictions can be impo

In this case, putting (6) into (3), we get

(9)we(r)= ± 2

π2

Λ3/2

λ1/2
exp

(
−h
λ

)
Je(X),

where we define the normalized distance from the axis,

X = r√
Rλ
,

the deformation length,

Λ= θ2/3|B|2/3R1/3,

and the integral,

(10)Je(X)=
∞∫

0

exp

(
−Y

2

2

)
ψ

(
Y

X

)
dY.

In Eq. (9), the plus sign holds for a repulsive force (B > 0),
and the minus sign for an attractive force (B < 0). Here, we
also made the following change of variable in (3):

Y = y√
Rλ
.

Already from Eq. (9) it follows that deformation deca
exponentially with separation, and that the decay lengt
equal to that of the surface force that caused it.

Following [9], it happens that in the particular case of
exponential force, the integral (10) may be written in clo
form (see their Eq. (A2.5)) as

(11)Je = π3/221/2

4
exp

(
−X

2

4

)
I0

(
−X

2

4

)
,

whereI0 is the Bessel function. For another type of force,
integral giving the deformation must be in general calcula
numerically. We performed this calculation as a check of
above formula. Sinceψ(Z) has a logarithmic singularity i
Z = 1, viz.,

(12)ψ(Z)∼ 1

2
log

(
8

|Z− 1|
)
,

we first writeJe in two parts as in Eq. (A.3) in Appendix A
then extract the singularity using (12) in each integral
integrate the singular contributions by parts. Results are
ted in Fig. 2.
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Fig. 2. Results forJe as a function ofX. Exact results (solid curve) an
various approximations: Padé approximant aroundX = 2 (circles), peak
approximation (diamonds) for smallerX, and tail approximation (squares
for largerX. The various approximations appear here superimposed
the exact results (the maximum difference being 2.5× 10−3).

For practical purposes, it is also useful to obtain appr
imation formulae. Analytic expansions may be obtained
the limits of small and largeX.

4.1.1. Small distances from the axis, or “peak”
For small normalized distancesX, we calculate the ex

pansion from (11):

Je,peak(X)=
√

2π3/2

4

(
1− 1

4
X2 + 3

64
X4 +O(X6)

)
.

For another type of force for which no closed form such
(11) exists, such an expansion can be calculated as sho
Appendix A, in which the above expansion is checked.
terms are even, as could be anticipated from symmetry
deformation profile is, to this order,

we,peak(X)= ± 1√
2π

Λ3/2

λ1/2

× exp

(
−h
λ

)(
1− 1

4
X2 + 3

64
X4
)
.

From the numerical calculations ofJe(X), the maximum de-
formation is found to be on the axis, so that its value is

we,max = ± 1√
2π

Λ3/2

λ1/2 exp

(
−h
λ

)
,

and the actual distance at the point of closest approac
then

(13)d = h± 1√
2π

Λ3/2

λ1/2 exp

(
−h
λ

)
.

Equation (13) demonstrates that at separationh such that
λ
 h, the change in surface separation,δd , is equal to how
far surfaces have been moved,δh. When surfaces are in clos
proximity,h∼ λ or h
 λ, this is no longer the case. For a
attractive interaction (when the minus sign holds) the s
faces are pulled toward each other, andd decreases mor
n

(A)

(B)

Fig. 3. (A) Solid lines: isolines of the function|we,max/h| in the first order
approximation. Dashed lines: isolines of the normalized curvatureR/Reff,
Eq. (15); there is a superposition of the sets of linesR/Reff < 1 for a re-
pulsive force and> 1 for an attractive force. (B) Solid lines: isolines of th
function |we,max/h| in the second order approximation, that is,|(d−h)/h|
from Eq. (B.1). Dashed lines: isovalues of the ratio of the second order
to the first order term in the expression for|we,max/h|.

rapidly thanh. For a repulsive interaction (when the pl
sign holds) the surface separationd remains larger thanh.

The assumption that leads to Eq. (13) is that the defor
tion w is small as compared withh. We will now check in
which conditions this is indeed true, and whether it impo
some restrictions to the value ofλ. The assumption of sma
deformation can be written as

(14)

∣∣∣∣we,max

h

∣∣∣∣= 1√
2π

Λ

h

(
Λ

λ

)1/2

exp

(
−h
λ

)

 1

in terms of the dimensionless distanceh/Λ and dimension-
less decay lengthλ/Λ. The isolines of|we,max/h| are pre-
sented in Fig. 3A. Strictly speaking, the domain of appli
bility of our solution lies on the right side of an isoline, s
0.1 for a 10% precision. However, as we will show below
some situations the original restriction of small deformat
can be relaxed.

The radius of curvatureReff of the peak region can b
calculated analytically by collecting the terms inr2 in the
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expressionH = h+r2/(2R)+we,peakand writing it asH =
d + r2/(2Reff). We then obtain the normalized curvature:

(15)
R

Reff
∼ 1∓ 21/2

4π1/2

(
Λ

λ

)3/2

exp

(
−h
λ

)
.

This means that the deformation involves not only a cha
in separation, but also a considerable change in curva
i.e., flattening (negative sign for repulsive forces) or el
gation (positive sign for attractive forces). Lines of const
R/Reff are also plotted in Fig. 3A. One can see that at r
tively smallλ/Λ andh/Λ, R/Reff varies over a large rang

4.1.2. Large distances from the axis, or “tail”
Expanding (11) for largeX, or expandingψ for largeX

in (10) and integrating, we obtain

Je,tail(X)= π

2

[
1

X
+ 1

2X3
+ 9

8X5
+ 75

16X7 +O
(

1

X9

)]
.

Therefore,

we,tail(X)∼ ± 1

π

Λ3/2

λ1/2
exp

(
−h
λ

)

×
[

1

X
+ 1

2X3 + 9

8X5 + 75

16X7

]
.

4.1.3. Intermediate distances from the axis, or “sloping”
For practical purposes, it is useful to have simple form

lae, and we propose the expression

Je,sloping(X)

= 0.917− 0.42(X− 2)+ 0.158(X− 2)2 − 0.046(X− 2)3

1+ 0.096(X− 2)+ 0.0339(X− 2)2 − 0.051(X− 2)3
,

which was obtained by expandingJe(X) as a Taylor serie
aroundX = 2, integrating, and then constructing a Padé
proximant to improve the series convergence. Matchin
this intermediate approximation with the peak approxim
tion atX1 = 0.7575 provides a 2.5 × 10−3 precision; and
matching it with the tail approximation atX2 = 3.214 pro-
vides a 2×10−3 precision. Decreasing the numbers of ter
to 2 in the peak and tail regions and three in the interm
ate region would decrease the accuracy of our descriptio
3.7×10−2. If we keep only two terms in each region the r
ative accuracy is 7.7 × 10−2. The best approximations fo
Je (see above formulae) are plotted together with the e
result in Fig. 2.

We remark that the first order terms of the expans
aroundX = 2 give the slope there:

Je,slope(X)∼ 1.9322− 0.5076X.

Therefore, as an approximate estimate one can use

we,sloping(X)∼ ± 2

π2

Λ3/2

λ1/2
exp

(
−h
λ

)(
2− X

2

)
.

Several main conclusions can be made from inspec
of our asymptotic expressions for the deformation due
,

exponentially decaying forces. First, deformation decays
ponentially with separation, and its decay length is exa
the same as that of the interaction that caused it. Sec
similarly to the deformation due to a power-law force [1
it is linear inθ and in the strength of interaction (B), and in-
creases weakly (∼R1/2) with the size of interacting bodie
An important consequence would be a strong dependen
deformation due to double layer forces on the surface po
tial (asB ∼ ψ2

0). Also, much larger deformation should
expected for the SFA, due almost entirely to the large ra
of curvature of the surfaces. Third, deformation depend
a complex way onλ/Λ andh/Λ, and can be extremely im
portant at relatively small values of these parameters.

4.2. Interaction force caused by deformation

In Ref. [33] it has been shown that in the general c
it is wrong to estimate the correction to pressure (force
assuming simply thatΠ =Π(H(r)). However, this approx
imation has been justified for the case of small deformat
w
 H̃ . If so, one can write

(16)Π(H)=Π(H̃ +w)= Π̃(H̃ )+%Π.
Substitution of the expression for exponential pressure g

Πe(H)= B

2πλ
exp

(
− H̃ +w

λ

)

(17)= Π̃e(H̃ )exp

(
−w
λ

)
.

We remark and stress thatΠe(H) is always less tha
Π̃e(H̃ ). This means that for repulsive exponential inter
tion (w > 0) the absolute value ofΠe(H) is also smaller
than Π̃e(H̃ ). An important point to note is that the resu
ing pressure remains positive. The new pressure tend
decrease the absolute value of deformation [41], an e
we ignore in our first-order approach. Therefore, one
conclude that the first-order approximation we develop h
being formally applied to the situation of large deformati
will overestimate it. Clearly, the opposite situation wou
happen in case of an attractive interaction (w < 0). While
Π(H) will again be less thañΠ(H̃), this will increase the
absolute value of pressure [12]. The new pressure w
then tend to make deformation larger, so the first-order
proximation will underestimate the deformation caused
attractive forces.

As a first order approximation for the perturbation
pressure one can use%Π = dΠ̃/dH̃ × w(r) and estimate
it as

%Πe = −B exp(−H̃/λ)
2πλ2

×we(r)

(18)= − B

π3

(
Λ

λ

)3/2

exp

(
−2h

λ

)
exp

(
−X

2

2

)
Je(X).

Direct substitution of the asymptotic expressions forJe
into (18) allows an estimate ofΠe in each region and a
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estimate of the second order approximation for deformat
and justifies, in some situations, the extension of the dom
of applicability of the first order solution (see Appendix B

Now we can calculate the force between elastic surfa
In our approximation it can be presented as

(19)F = 2π

∞∫
0

Π(r)r dr = F̃ (h)+%F.

Note that, with deformation, the area over which the pr
sure has to be integrated also changes. However, the pre
still decays fast enough so that this change of surface
be embedded in the integral forr to ∞. Thus, the elasticity
contribution caused by the exponential force can roughl
estimated as

%Fe = 2πRλ

∞∫
0

%Πe(X)X dX

= −BR
λ

exp

(
−h
λ

) ∞∫
0

e−X2/2we(X)X dX.

Thus

%Fe = BR
(
Λ

λ

)3/2

exp

(
−2h

λ

)
Ω1,

where

Ω1 = 2

π2

∞∫
0

∞∫
0

exp

(
−X

2 + Y 2

2

)
ψ(X/Y )X dXdY.

The integralΩ1 is more easily calculated using polar coo
dinates(ρ, θ) in the(X,Y ) plane:

Ω1 = 2

π2

∞∫
0

e−ρ2/2ρ2dρ

π/2∫
0

ψ(tanϑ)cosϑ dϑ

= −2
√
π/2× 1.11407

π2
= −0.28209.

(The second integral has only a weak log singularity inϑ =
π/4.) Finally, the force is

Fe = F̃e(h)+Ω1BR

(
Λ

λ

)3/2

exp

(
−2h

λ

)

(20)= F̃e(h)
[
1+Ω1

(
Λ

λ

)3/2

exp

(
−h
λ

)]
.

All the techniques for force measurement measure
real force, i.e., the force distorted by deformation and
scribed by Eq. (20). In the AFM and MASIF experiment t
separation is not measured, being inferred from force–p
position data [21–25]. Strictly speaking, all these meth
are not generally applicable. Therefore, here we simply
the fact that the AFM/MASIF measurements are correc
for separation, so that in the ideal situation the undistur
re

distanceh can be deduced (provided that the zero of s
aration is established correctly). The same assumption
made in Ref. [11]. If so, Eq. (20) can be used to conn
the force measured experimentally with̃Fe(h), which re-
flects the interaction free energy of two surfaces separ
by distanceh. SinceΩ1 is negative, one can conclude th
the AFM/MASIF measurements give more attractive fo
than would be observed between rigid bodies. Physic
this reflects the change in separation due to deformatio
the SFA experiment it is the distorted separationd which is
measured, so that it would be useful to expressFe via F̃e(d).
Expanding (8) aroundh we get

F̃e(d)− F̃e(h)∼ − BR√
2π

(
Λ

λ

)3/2

exp

(
−2h

λ

)
.

Then (20) can be rewritten as

(21)Fe ∼ F̃e(d)+Ω2BR

(
Λ

λ

)3/2

exp

(
−2h

λ

)
,

whereΩ2 = 0.1168. The positive sign ofΩ2 suggests tha
the force curves measured with the SFA are more repu
than one can expect for rigid surfaces. Unfortunately, in c
of the SFA experiment, it is not so easy to recalculate
measured force to the interaction free energy atd , because
Eq. (21) containsh, which cannot be explicitly presente
as a function ofd . One can, however, always calculateh
numerically, by solving Eq. (13).

The meaning of the second term in Eq. (21) can be un
stood if one recognizes thatFe can be expressed viãFe(d)
by substitutingΠ(H) into Eq. (19) and integrating by part
which gives

Fe = F̃e(d)− BR

λ

∞∫
0

(
∂w

∂r

)
exp

(
−H
λ

)
dr.

So, physically, this term reflects the change in slope nea
line-of-centers due to deformation.

Some misleading ideas about the effect of small defor
tions on total force may have been obtained by casual r
ers of the publications [7,11], where the so called “slow
varying deformation approximation” (SVDA) has been
troduced. The SVDA is said to be valid when “deformat
varies slowly compared to curvature” (quantities being n
malized) and postulates two assumptions:w(r)∼wmax and
F ∼ F̃ (d). As we have shown before [33], the conditi
for small deformation is equivalent to that of small slo
(∂w/∂r 
 r/R). This allows one to express pressure as
function of gap profileH , which, mathematically, resemble
the tricks used to derive the Derjaguin approximation
However, the resulting force is not proportional to the int
action free energy per unit area between planar walls s
rated byd as was suggested in [11], being confined betw
F̃e(h) andF̃e(d). Hence, in the SVDA the second term of t
expression for force described by Eq. (21) is lost, altho
it is neither zero nor negligible.
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In summary, extra force due to deformation decays
ponentially with separation, with a decay length half tha
the original force. The sign of this elasticity contribution d
pends on how the separation is detected: it can lead to e
less or more repulsive force compared with the case of r
surfaces ath or d respectively. Obviously the Derjaguin a
proximation (7) is no longer valid for elastic surfaces, but
interaction free energy per unit area can be obtained dire
with the approximation suggested here.

5. Discussion

In this section we give some numerical examples tha
lustrate the above results and conclusions. We focus m
on double layer forces, because of their importance as a
of the DLVO potential, and because of their repulsive ch
acter. We also confine ourselves to parameters typical
surface force experiment. The generalization of our res
to other types of exponentially decaying interactions or
ferent experimental situation would be straightforward.

5.1. Repulsive forces

Fig. 4 illustrates the effect of double layer forces on
real separationd between the surfaces. Both the first ord
(Eq. (13)) and second order (Eq. (B.1)) approximations
represented. As shown above, the first order approxima
also is an upper bound. It is observed in Fig. 4 that the
and second approximations become close and even p
cally coincide for smallB (small|ψ0|), Fig. 4A, and largeλ,
Fig. 4B. For smallh, this even occurs outside of the doma
of small deformationd 
 h. This is an indication that th
domain of validity of the first order approximation is mu
larger than anticipated from Fig. 3B. Details about this
tension are presented in Appendix B. All these curves w
computed for a typical SFA radius of curvature (R = 1 cm).
Similar calculations for a typical AFM size (R = 10 µm)
give negligibly small deformation andd practically coin-
cides withh.

The surface profiles for two elastic surfaces interac
with an exponential repulsion are shown in Fig. 5 at vari
surface separations. For comparison, the undeformed su
shapes are also plotted. The data are plotted in this ma
so that the profiles represent the shape of the fringes w
would be observed during SFA experiments. One can
that as the surfaces approach each other they begin to fl

Computed force curves for four different surface pot
tials for the deflection (SFA) method and the force feedb
(MASIF) method are shown in Fig. 6. As predicted, S
measurements are more repulsive than the interaction
energy, while the MASIF measurements are more attrac
The same calculations performed with the typical radiu
the AFM colloidal probe suggest that there is practically
elastic contribution to the total force. As before [12], t
r

t

i-

e
r

.

(A)

(B)

Fig. 4. A plot of the real separationd between solids at the point of close
approach against the undeformed separation. In the absence of deform
d = h until contact (dots). Deformation effect is due to repulsive dou
layer forces. Solid curves plot the first order, and dashed, the second
solution, respectively. Parameters assumed in the calculations are a
lows. Effective radiusR = 1 cm, elastic constantθ = 5 × 10−10 m2/N.
(A) demonstrates the effect of potential, from top to bottom|ψ0| = 50,
40, 30, and 20 mV, at salt concentration 5× 10−3 mol/L, giving a decay
length ofλ = 4.3 nm. (B) shows the influence of the salt concentration
|ψ0| = 40 mV. From top to bottom it is 10−2, 5× 10−3, 10−3, 5× 10−4,
and 10−4 mol/L, which correspond toλ equal to 3.0, 4.3, 9.6, 13.6, an
30.4 nm.

typical SFA experiment gives more accurate results than
MASIF experiment.

Hydration forces observed between mica surface
aqueous electrolyte solutions [15] are of roughly expon
tial type and appear only at short distances. These fo
are nearly independent of electrolyte type and concentra
There have previously been some arguments that surfac
formation did not account for the observation of hydrat
forces [10], as well as arguments that the measuremen
hydration forces are influenced by it [11]. The results
tained within the assumptions of our model rather sup
the former point of view [10]. However, we cannot exclu
the possibility that for large deformation (i.e., when the
fect due to change in radius will be comparable to or m
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Fig. 5. Surface profiles for two surfaces interacting with a repulsive do
layer force:|ψ0| = 40 mV, θ = 5× 10−10 m2/N, R = 1 cm. From top to
bottomh varies from 10 to 0 nm by steps of 2 nm. The circles repres
the undeformed profiles. The solid lines represent the deformed profile
culated at first order for small deformation (w/(h+ r2/(2R)) < 0.1). The
dots represent the continuation of the preceding curves in the range w
(w/(h+r2/(2R)) > 0.1). (A) λ= 3.0 nm (concentration 1×10−2 mol/L);
(B) λ= 2.15 nm (concentration 2× 10−2 mol/L).

important than the distortion of the separation), the elasti
contribution could account for most of the observed diff
ence between DLVO theory and experiment.

5.2. Attractive forces

The cross-sectional surface separation for two surfa
interacting with an attractive surface force are shown
Fig. 7. The profiles are very different from those for a rep
sive interaction. The computed profiles for the long-ra
part of the hydrophobic interaction are not disturbed by
formation. In contrast, for the short-range hydrophobic
teraction we see dramatic deviations from the undeform
(A)

(B)

Fig. 6. Computed force curves for surfaces interacting with three di
ent surface potentials: from top to bottom|ψ0| = 50, 40, and 30 mV,
λ = 1.4 nm (concentration 5× 10−2 mol/L). Solid curves show the force
expected between the rigid bodies separated by distanceD, dashed curves
correspond to the force acting between elastic surfaces. (A) illustrate
SFA deflection methodD = d , R = 1 cm,θ = 5× 10−11 m2/N. (B) illus-
trates the MASIF feedback methodD = h, R = 1 mm,θ = 10−10 m2/N.

shapes. Shape changes are significant on the length
over which surface forces act. This has already been dis
ered before for elastic solids [10] and drops [42,43] an
made evident again here in Fig. 7B.

This effect is best illustrated by the force curves sho
in Fig. 8. Since the calculations performed for a long-ra
hydrophobic interaction do not reveal any effect of surf
deformation, we consider only a situation corresponding
short-range hydrophobic force. As expected, the deviat
from the force–distance profile expected for rigid surfa
are discernible at separations considerably larger than
decay length of the force. This effect alone, however, can
predict a long-range tail of the hydrophobic force.

All conclusions of this subsection are made by assum
that the deflection technique can be used at any separa
In other words, we have ignored the possibility of the ju
instability, i.e., the fact that at some separations the di
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Fig. 7. Surface profiles for two surfaces interacting with an attractive f
law. The circles represent the undeformed profiles. The solid lines r
sent the deformed profile calculated at first order for small deforma
(w/(h+ r2/(2R)) < 0.1). The dots represent the continuation of the p
ceding curves in the range where (w/(h + r2/(2R)) > 0.1). R = 1 cm,
θ = 5 × 10−10 m2/N. From top to bottomh varies from 10 to 4 nm by
steps of 2 nm. (A)B = −10−3 N/m, λ = 10 nm; (B)B = −0.5 N/m,
λ= 1 nm.

measurement of the force presented in Fig. 8 could be
possible. In the elastic system this could be mostly du
a force measuring spring [19,44] and partly due to de
mation itself [5,7,45,46]. We do not address the questio
a jump separation in the current paper. However, it sho
be stressed that our results mean that it would be wron
extrapolate the force vs separation curve obtained by m
suring the jump position to the region of short separatio
In this region, the real force is more attractive then it wo
follow from the jump method, with dramatic consequen
for adhesion and other phenomena influenced by the s
range attractive interaction forces.
-

-

Fig. 8. Computed force curves for surfaces interacting with a short r
exponential force (λ = 1 nm,B = −0.5 N/m). The solid curve shows th
force expected between rigid surfaces. Dashed curve corresponds
SFA deflection methodD = d , R = 1 cm,θ = 5 × 10−11 m2/N. Dots il-
lustrate the MASIF feedback methodD = h,R = 1 mm,θ = 10−10 m2/N.

6. Conclusion

We have calculated analytically the shape of elastic
faces and the total force between them as they inte
through an exponentially decaying surface force, assum
that the deformation is small. The effect of elasticity is fou
to be especially important when the decay length of this
teraction is short (rapidly changing force), and the prefa
is high (large force). The interaction force causes signific
deformation which depends in a complex way on the na
of the interaction and configuration geometry, and wh
decays exponentially with the decay length of the orig
force. Deformation, in turn, produces an additional expon
tial force with half the decay length. All the force measu
ment techniques measure the total force between sur
which includes this elasticity contribution and do not c
rect for error in the force due to deformation. The measu
minimum separation is either real (SFA), i.e., including
formation, or corrected (AFM/MASIF). Ironically, with th
same experimental parameters, the correction for separ
leads to larger deviations of measured force from the fo
that would act between rigid surfaces (interaction free
ergy). This reflects the fact that when deformation is sm
(and/or varies slowly with slope), the change in separa
due to deformation is more important than the change in
dius near the line-of-centers. We believe our results pro
an important tool to correct the measured force between
tic surfaces to the true interaction free energy.
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Appendix A. Expansion of the integral in Je for small X

Let us find the expansion ofJe, defined in (10), for
smallX. Sinceψ(Z) has a logarithmic singularity atZ = 1,
we write it in two parts, one fromY = 0 toX and one from
Y =X to ∞. LetZ = Y/X in the first part andZ =X/Y in
the second part. Then

Je(X)=X
1∫

0

exp

(
−Z

2X2

2

)
ψ(Z)dZ

(A.1)+X
1∫

0

1

Z2
exp

(
− X2

2Z2

)
ψ

(
1

Z

)
dZ.

Now from its definition, forZ �= 0 the functionψ satisfies

(A.2)ψ

(
1

Z

)
= 1

Z
ψ(Z),

so that

Je(X)=X
1∫

0

exp

(
−Z

2X2

2

)
ψ(Z)dZ

(A.3)+X
1∫

0

1

Z3
exp

(
− X2

2Z2

)
ψ(Z)dZ.

Let the first integral beI and the second one beJ .

A.1. Expansion of I

In the expression (5) providing the functionψ , we will
use the definition of the elliptic integralK,

K(x)=
π/2∫
0

dα√
1− x sin2α

,

so that

ψ(Z)=
π/2∫
0

f (Z,α) dα,

where

(A.4)f (Z,α)= Z√
(Z+ 1)2 − 4Z sin2α

.

The integralI is first expanded inX; then each term in th
expansion is first integrated analytically inZ and then inα.

A.2. Expansion of J

The calculation ofJ should be treated with care sin
the integral becomes singular forX → 0. This is a typical
singular perturbation problem. The singularity is extrac
by using an expansion ofψ for smallZ. We then need an
expansion forf , Eq. (A.4), for smallX, which is written
symbolically as

(A.5)f (Z,α)=
2∑
m=1

βm(α)Z
m +R(α,Z).

Then

(A.6)J =
1∫

0

1

Z3 exp

(
− X2

2Z2

) π/2∫
0

f (Z,α) dα dZ

is written asJr + Js , where

(A.7)Jr =
π/2∫
0

1∫
0

1

Z3
exp

(
− X2

2Z2

)
R(Z,α) dZ dα

is regular because of theO(Z3) behavior ofR(Z,α), and

(A.8)Js =
4∑
m=1

( π/2∫
0

βm(α) dα

) 1∫
0

zm−3 exp

(
− X2

2Z2

)
dZ

contains the singular part.
As for Jr , the integral with the exponential could not

calculated analytically. But using a first order expansion
the exponential for smallX, that is, replacing the exponenti
by unity, we still have a convergent integral which can
integrated analytically first inZ and then inα.

As forJs , the singularity in (A.8) is resolved in the class
cal way, using a stretched variableẐ = Z/X. The integrals
in Ẑ are convergent in̂Z = 0 because of the exponentia
they can be integrated analytically.

A.3. Result for Ie

Analytical calculations give

(A.9)I = 1+O(X2),

(A.10)Jr = −1+ 3

8
π +O(X2),

(A.11)Js =
√

2

4X
π3/2 − 3

8
π −

√
2

16
π3/2X+O(X2).

It is seen that as a result of matching, which is performed
simply adding up the parts of the integral,Je =X(I + Jr +
Js), some terms cancel out. The final result is

(A.12)Je ∼
√

2π3/2

4

(
1− 1

4
X2
)
.

To calculate higher order terms analytically, we have
be careful that expanding the exponential to higher orde
(A.7) would give divergent integrals inZ = 0. ThusR(Z,α)
has to be more regular inZ = 0. The upper valuem= 2 in
(A.5) should be replaced by a higher valuem =M. Taking
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M = 10, we could calculate with Maple computer algebr

(A.13)

Je =
√

2π3/2

4

(
1− 1

4
X2 + 3

64
X4 − 5

768
X6

+ 35

49152
X8
)
,

and the next term would beO(X10).

Appendix B. Second order approximation for
maximum deformation

We have calculated the deformation, assuming that
pressure is not disturbed. However, as we have shown
deformation causes a change in the pressure. The ca
tion of the second order solution can be obtained by u
Eq. (18) instead of (6) in (3). Here we only estimate the m
imum deformation, that is, the amount by which the cen
part of the two surfaces would be displaced elastically. T
is given by [40]

wmax= 2θ

∞∫
0

Π(r) dr

= 1√
2π

Λ3/2

λ1/2
exp

(
−h
λ

)
+ 2θ

∞∫
0

%Πe(r) dr.

The mathematical manipulations and calculation of
integral

2θ

∞∫
0

%Πe(r) dr = − 2Λ3

π3λ2 exp

(
−2h

λ

)

×
∞∫

0

Je(X)exp

(
−X

2

2

)
dX

give

Υ =
∞∫

0

Je(X)exp

(
−X

2

2

)
dX,

which can be calculated with the use of asymptotic equat
for “peak,” “tail,” and “sloping.” It is found thatΥ ∼ 2.0556.

This leads to

d ∼ h+ 1√
2π

Λ3/2

λ1/2
exp

(
−h
λ

)
− Υ 4Λ3

π3λ2
exp

(
− 2h

λ

)

= h+ 1√
2π

Λ3/2

λ1/2
exp

(
−h
λ

)

(B.1)×
(

1− Υ 2
√

2

π2
√
π

(
Λ

λ

)3/2

exp

(
−h
λ

))
.

By construction of the expansion, the ratio of the sec
order term to the first order one should be small, viz.:

(B.2)Υ
2
√

2
2
√

(
Λ
)3/2

exp

(
−h

)

 1.
π π λ λ
-

This quantity is plotted as dashed lines in Fig. 3B. It is
served that the condition (B.2) is satisfied even in the dom
where(d−h)/h (represented as solid lines in Fig. 3B) is n
necessarily small. This gives an indication that the rang
applicability of our first approximation is larger than that a
ticipated from Fig. 3A.

Note also that using (15), the condition (B.2) may
rewritten as∣∣∣∣1− R

Reff

∣∣∣∣
 8Υ

π2 ∼ 1.6662.

Physically, this means that the area of applicability of
first order solution can be extended in case the chang
curvature is small enough.
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