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Abstract

Our goal is to study theoretically the effect of deformation on the exponentially decaying interaction of two elastic solids separated by a thin
liquid film. The deformed shape of the surfaces and the contribution of the elasticity to the total force, i.e., an additional term present betweer
elastic bodies, are calculated from continuum elastic theory via a new asymptotic technique. Both the deformation and the contribution
of the elasticity to the force are found to be significant on the length scale over which the surface force acts. The surface deformation is
exponentially decaying with a decay length equal to that of the original surface interaction. It is especially important for large and/or rapidly
changing force. The contribution of the elasticity is also exponentially decaying, but with half the decay length. Its strength depends on the
elastic constants and size of the solids and on the magnitude and gradient of the original surface force. Depending on how the separation
detected, it can appear either as an attractive or as a repulsive contribution to the force. Our results open the possibility of recalculating thi
measured force to the interaction free energy.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction deformation caused by power-law attractive forces. The as-
ymptotic expressions for deformation have been used to

Most theoretical and experimental studies of surface calculate analytically the interaction force between elastic
forces, or the forces acting between microscopic or evenbodies and to demonstrate that it differs dramatically from
macroscopic bodies when they are in close proximity, have the force in the case of rigid surfaces. The main point of
been conducted assuming that the surfaces are rigid [1].this, the second paper, will be to extend this approach to the
However, the solids are usually elastic. Therefore, they cancase of exponentially decaying interaction. This type of in-
be deformed during the interaction. While the elastic dis- teraction represents both the repulsive (double-layer [13,14]
tortion of solids at contact (adhesion) has been intensively and hydration [15]) and the attractive (hydrophobic [16—18])
studied by invoking either infinitely short-range [2-5] or forces, and is therefore important for understanding various
finite-range [6-8] surface forces, precontact deformation is phenomena, such as adhesion, cavitation, and colloidal sta-
not predicted by classical theories and has attracted muchyjlity. The current work is concerned only with deformation
less attention, althOUgh there are some theoretical results foraway from contact, or precontact deformation, and gives a
repulsive interactions [9,10], as well as some numerical cal- simple but accurate description of the exponentially decay-
culations [11]. ing interaction of elastic surfaces.

In the previous paper [12], we adopted simplifying ap- oy paper is arranged as follows: In Section 2 we present
proximations, which led to explicit asymptotic formulas for 5 prief description of the main experimental techniques. The

system and approach are defined in Section 3, and the as-
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tic bodies are presented in Section 5. We conclude in Sec-
tion 6.

2. Force measurement technique

As before [12], we will examine two main experimental
devices, the surface force apparatus (SFA) and the atomic
force microscope (AFM). We will also consider a third
method, the so-called measurement and analysis of surface
interaction and forces (MASIF) technique.

The SFA [19] uses mica surfaces, with a radius of cur-
vature R ~ 1-2 cm, glued to polished silica discs with an
epoxy resin. One surface is mounted at the end of a double-
cantilever force measuring Spring_ The surface Separation isFig..l. .Schematic of the deformation of two elastic spheres separated by
determined by multiple-beam interferometry, which also al- a thin film. Curves 1 and 2 Qenote the undeformed surfaces and the actual

. . LT deformed surfaces, respectively.
lows surface deformation to be monitored in situ.

The AFM [20] uses so-called colloid probes®f~ 1.5—

5 um, glued or melted to the end of a single microfabricated o ]
cantilever. In the case of rigid bodies the absolute separatione focus only on the precontact situation, so thas as--

is inferred from the deflection vs piezo position behavior, Sumed to be positive. The deformed gap profile can be given
and the contact is assumed to take place at “constant comJocally as

pliance,” i.e., when the deflection of the cantilever becomes

linear with respect to sample displacement. The main dif- H(r) = H(r) + w(r), 2
ficulty with AFM measurements on deformable systems is

that there is no sharp transition between contact and non-wherew(r) = w1(r) + w2(r) is the sum of the deformations
contact because deformation occurs prior to contact. This of the two surfaces from their original shape. A deformation
means that the zero of separation cannot be determined irntoward the opposing surfaces is defined as negative, and one
the same ways as for rigid bodies. However, several meth-away from it as positive.

ods have been used in attempts to resolve the problem for In order to determine the deformation we shall follow
some special cases [21-25]. the ideas of the Hertz contact theory of linear elasticity [31]

In the MASIF [26] spherical surfacek(~ 1 mm) are and also the developments in [6,9,12,32,33], whose authors
mounted at the end of a piezoelectric bimorph, which per- studied deformation due to the action of surface and hydro-
mits the spring bending to be measured electronically. The dynamic forces. The normal displacement of the surface at a
surface separation can then be calculated from this bendingyoint r off the central axis under a given disjoining pressure

as in the AFM. I(r) is [32,33]
3. Analysis w() = ;/H(yw(r, y)dy, 3)
3.1. Model 0

We consider two smooth elastic spheres with r&diand where the parameterin (3) is defined as

R, and a situation in which the gap between the spheres is ) )
small compared to the smaller of their radii. In this approx- 4 _ 1—vi 1-v5
imation, the interaction of two spheres (AFM, MASIF) is E E>
equivalent to the interaction of a sphere with a plane (AFM), . . , . ,
which is in turn the same as for two crossed cylinders of “1:2'S Poisson’s ratio, andy 2 are Y'oung s modulus of elas-
equal radii (SFA) [27-30]. The deformed and undeformed ticity for spheres 1, 2. The Green'’s function kernel is given
surfaces of the two spheres are sketched in Fig. 1. The un- y

deformed spherical surfac can be approximated by a

: (4)

paraboloid, by = —2 K[ 4ry } 5)
3 2 y+r Lr+y)?
Hey=h+ 2R’ @) where K is the complete elliptic integral of the first kind.

whereR is the reduced radiuB1 R2/(R1 + R2), andh is the The functiong (r, y) is in reality a functiomy of a single
distance between the undeformed spheres. Here and belowariableZ =y /r.
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3.2. Interaction forces 4. Asymptotic solution

The exponentially decaying pressure between unde-4.1. Deformation profile

formed surface¢l, can be described as ) )
The solution of the system of equations (2) and (3) and

L B H the equation describing pressure between the surfacés for
Me(H) =5 — exp( ) (6) andw in general requires a numerical method. However, for
small deformation « &), these equations can be solved
with the coefficients and the decay length. This pressure by an asymptotic method. In this case, in the first approxi-
corresponds to an electrostatic (repulsive) component of themation the deformation can be determined via the pressure
DLVO model [13,14]. In this cas® = 4reeysZ/A, where profile in the absence of deformatidfi( A ) [32,33]. Strictly
e€q is the dielectric constantjo is the surface potential, and  speaking, our problem has two characteristic length scales,
A is equal to the Debye screening length®. Hydration h anda, so that some additional restrictions can be imposed.
forces [15] can also be a model with a single exponential  In this case, putting (6) into (3), we get
decay with much shorter and positiveB. Finally, the hy- o A32 I
drophobic attractive force can in general be modeled as a -4+ p(__>
we(r) == ex Je(X), 9)
single [17,18,34,35] or a double exponential function [16]. m2 A2 A
In this case, for the longer range pditis on the order of  where we define the normalized distance from the axis,
—10-3 N/m, andx can be as large as 30 nm. For the shorter ’
range parts is roughly—0.5 N/m andi =1 nm. X= JRL
For rigid solids, the interaction forcg(h) is connected
with the interaction free energi (k) between two planar  the deformation length,
half-spaces by the Derjaguin approximation [27,28]:

A

A =023B23RY3,

F(h)=27R x E(h). 7) and the integral,

Interaction free energy is a universal quantity characteristic N Y2 Y

of the surfaces and the fluid, which, according to (7), can be Je(X) = / exp(—7)w <§) dy. (10)
derived from the measurements of the forces between rigid 0

bodies: In Eq. (9), the plus sign holds for a repulsive for@&* 0),
and the minus sign for an attractive forag & 0). Here, we

o0
) o h ) . . )
F(h)=27R / A = BRexp(—x) ) also made the following change of variable in (3):
y
h =—.
v RA

When the measurements deviate from theory, an extra force
is inferred to be present.

Mathematically, the derivation of the Derjaguin approx-
imation (7) uses the possibility of expressidg(r) as
T(H()).

Already from Eqg. (9) it follows that deformation decays
exponentially with separation, and that the decay length is
equal to that of the surface force that caused it.

Following [9], it happens that in the particular case of an
exponential force, the integral (10) may be written in closed

) form (see their Eq. (A2.5)) as
3.3. Elagtic constants

3/221/2 X2 X2
) ) ) Jo = expl — Jlo| — ). (12)
The effective elastic constants of the mica—glue system 4 4 4
may be easily calculated from the radius of the contact wherely is the Bessel function. For another type of force, the
zone and the pull-off force measured in the SFA [36,37]. integral giving the deformation must be in general calculated
The measured values of the elastic constants, recalculatechumerically. We performed this calculation as a check of the

to 0, are large, on the same order as that of sili¢as above formula. Since (Z) has a logarithmic singularity in
1.9 x 10t m?/N, and only a factor 3 or 4 less than that of 7 =1, viz.,

mica,# = 6.7 x 10-12 m?/N. The average of all the mea- 1 8

surements [38] ig3.2 £ 1.3) x 1071t m?/N. The recent  y(2) ~ = Iog( ) (12)
development of the reflection SFA technique [39], however, 2 1Z -1

makes it possible to work with much softer surfaces. The we first write J, in two parts as in Eq. (A.3) in Appendix A,
MASIF and AFM experiments have already been performed then extract the singularity using (12) in each integral and
with soft materials, such as, for example, solid polymers integrate the singular contributions by parts. Results are plot-
[25,35]. In this cas® can be as large as®x 1010 m?/N. ted in Fig. 2.
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Fig. 2. Results for/, as a function ofX. Exact results (solid curve) and
various approximations: Padé approximant arothe: 2 (circles), peak
approximation (diamonds) for smalléf, and tail approximation (squares)
for larger X. The various approximations appear here superimposed onto
the exact results (the maximum difference beir210-3).

For practical purposes, it is also useful to obtain approx-
imation formulae. Analytic expansions may be obtained in
the limits of small and larg& .

4.1.1. Small distancesfromthe axis, or “ peak”
For small normalized distancgs, we calculate the ex-
pansion from (11):
V232 1 3 : ‘
1--x24+ —x*+0(x9). A
4 ( 4 64 X7 (B
For another type of force for which no closed form such as Fig. 3. (a) Solid lines: isolines of the functidve. max/ /| in the first order
(11) exists, such an expansion can be calculated as shown irapproximation. Dashed lines: isolines of the normalized curvaRyiRes,
Appendix A, in which the above expansion is checked. All Eg. (15); there is a superposition of the sets of liRReff < 1 for a re-

terms are even, as could be anticipated from symmetry; thepulsive force and- 1 for an attractive force. (B) Solid lines: isolines of the
def fi ,f'l is. to thi d ! function |w. max/ | in the second order approximation, that|ig — r)/ k|
elormation pronie 1s, to this oraer, from Eq. (B.1). Dashed lines: isovalues of the ratio of the second order term

1 A3/2 to the first order term in the expression fare, max/ A/

1/2
Vo ;l 1 3 rapidly thank. For a repulsive interaction (when the plus
X exp(——) <1 —x24 _x4>, sign holds) the surface separatidmemains larger thah.
A 4 64 The assumption that leads to Eq. (13) is that the deforma-
From the numerical calculations @f(X), the maximumde-  tion w is small as compared with. We will now check in

Je,peak(X) =

We, peak(X) ==+

formation is found to be on the axis, so that its value is which conditions this is indeed true, and whether it imposes
1 432 i some restrictions to the value bf The assumption of small
Wemax= £ —=—= ——=expl —= |, deformation can be written as
’ V2r A2 A ) 12 ,
AfA
and the actual distance at the point of closest approach is we,max‘ = ——(—) exp(——) <1 (14)
then h Ve h \ A
1 A%2 b in terms of the dimensionlgss _distar!c,é/\ and dimension-
d=h+ ——=exp|l —— ). (13) less decay length/A. The isolines ofw, max/ k| are pre-
2 A2 A Lo . ) . .
sented in Fig. 3A. Strictly speaking, the domain of applica

Equation (13) demonstrates that at separatiosuch that bility of our solution lies on the right side of an isoline, say
A < h, the change in surface separatiéd, is equal to how 0.1 for a 10% precision. However, as we will show below, in
far surfaces have been movéd, When surfaces are in close  some situations the original restriction of small deformation
proximity, » ~ 1 or h <« A, this is no longer the case. For an can be relaxed.

attractive interaction (when the minus sign holds) the sur-  The radius of curvatur®es of the peak region can be
faces are pulled toward each other, ahdlecreases more  calculated analytically by collecting the termsifi in the
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expressior = h+r2/(2R) + we, peak@nd writing it asH = exponentially decaying forces. First, deformation decays ex-
d + r?/(2Reff). We then obtain the normalized curvature: ponentially with separation, and its decay length is exactly
3/2 the same as that of the interaction that caused it. Second,
R 21/2 / h Il _
— 1l (_) exp<——). (15) similarly to the deformation due to a power-law force [12],
Reff 4r1/? A itis linear in# and in the strength of interactio®}, and in-
g

i ioni creases weakly~ RY/?) with the size of interacting bodies
This means that the deformation involves not only a change ¢€¢ g .
in separation, but also a considerable change in curvature An important consequence would be a strong dependence of
i. e., ﬂatter"ng (negatwe S|gn for repu|s|ve forces) or elon- dEforma.tlon due to double Iayer forces on the surface poten-
gation (positive sign for attractive forces). Lines of constant tial (8s B ~ /). Also, much larger deformation should be
R/Reff are also p|otted in F|g 3A. One can see that at rela- eXpeCted for the SFA, due almost entlrely to the Iarge radius

tively smallA/A andh/A, R/Res varies over a large range.  Of curvature of the surfaces. Third, deformation depends in
a complex way ori./A andh/A, and can be extremely im-

4.1.2. Large distances from the axis, or “ tail” portant at relatively small values of these parameters.
Expanding (11) for larg&X, or expanding) for large X . )
in (10) and integrating, we obtain 4.2. Interaction force caused by deformation
Jotail(X) = Z[i + i + i + 5 + 0<i>} In Ref. [33] it has been shown that in the general case
’ 2x3 © 8x5 16X’ x° it is wrong to estimate the correction to pressure (force) by
Therefore, assuming simply thall = IT(H (r)). However, this approx-
imation has been justified for the case of small deformation:
,(X)Nil/‘s/z exof ~ w < H. If so, one can write
we,tall T )\'1/2 )\’ ~ _ ~
1 1 9 75 MN(H)=1II(H+w)=1I(H)+ AIl (16)
[Y + 2x3 + 8x5 + W} Substitution of the expression for exponential pressure gives
4.1.3. Intermediate distances from the axis, or “ sloping” ,(H) = B exp( H+ w)
For practical purposes, it is useful to have simple formu- 272 A
lae, and we propose the expression _ AL exp(—ﬂ) 17)
Je,sloping(X)

0.917—0.42(X — 2) + 0.158(X — 2)%2 — 0.046(X — 2)3 _We rem'ark and stress thaXIe(H). is always Ie;ss. than
= , II,(H). This means that for repulsive exponential interac-
1+0.096(X — 2) +0.0339X — 2)> - 0.051(X — 2)° tion (w > 0) the absolute value aff,(H) is also smaller
which was obtained by expanding(X) as a Taylor series  than IT,(H). An important point to note is that the result-
aroundX = 2, integrating, and then constructing a Padé ap- ing pressure remains positive. The new pressure tends to
proximant to improve the series convergence. Matching of decrease the absolute value of deformation [41], an effect
this intermediate approximation with the peak approxima- we ignore in our first-order approach. Therefore, one can
tion at X; = 0.7575 provides a B x 10~ precision; and conclude that the first-order approximation we develop here,
matching it with the tail approximation &, = 3.214 pro- being formally applied to the situation of large deformation,
vides a 2x 103 precision. Decreasing the numbers of terms will overestimate it. Clearly, the opposite situation would
to 2 in the peak and tail regions and three in the intermedi- happen in case of an attractive interactian € 0). While
ate region would decrease the accuracy of our description tol7(H) will again be less thadl (H), this will increase the
3.7 x 1072, If we keep only two terms in each region the rel- absolute value of pressure [12]. The new pressure would
ative accuracy is .7 x 1072, The best approximations for then tend to make deformation larger, so the first-order ap-
J. (see above formulae) are plotted together with the exact proximation will underestimate the deformation caused by

resultin Fig. 2. attractive forces.
We remark that the first order terms of the expansion  As a first order approximation for the perturbation of
aroundX = 2 give the slope there: pressure one can usell = dI1/dH x w(r) and estimate
it as
Je,slopd X) ~ 1.9322— 0.5076X. .
. . Bexp(—H /1)
Therefore, as an approximate estimate one can use All, = oz X We (r)
L2 A3/2 h X B [ A\%? 2h X2
ot~ o)), () o2 )or{ 5 oo oo

Several main conclusions can be made from inspection  Direct substitution of the asymptotic expressions fpr
of our asymptotic expressions for the deformation due to into (18) allows an estimate afl, in each region and an
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estimate of the second order approximation for deformation, distancek can be deduced (provided that the zero of sep-

and justifies, in some situations, the extension of the domainaration is established correctly). The same assumption was

of applicability of the first order solution (see Appendix B). made in Ref. [11]. If so, Eq. (20) can be used to connect
Now we can calculate the force between elastic surfaces.the force measured experimentally wiffa(i), which re-

In our approximation it can be presented as flects the interaction free energy of two surfaces separated

by distance:. Sinces2; is negative, one can conclude that

the AFM/MASIF measurements give more attractive force

than would be observed between rigid bodies. Physically,

this reflects the change in separation due to deformation. In

Note that, with deformation, the area over which the pres- the SFA experiment it is the distorted separatiowhich is

sure has to be integrated also changes. However, the pressur@easured, so that it would be useful to exprEssia F, (d).

still decays fast enough so that this change of surface canExpanding (8) around we get

be embedded in the integral forto co. Thus, the elasticity BR /ANY2 oh

contribution caused by the exponential force can roughly be 7, (q) — F,(h) ~ ——— <_> exp(——).

F =21 / I(r)rdr=F(h) + AF. (19)

estimated as N2 \ A A
00 Then (20) can be rewritten as
AFe=27rRA/AHe(X)XdX A\3/2 on
9 F, ~ F.(d) + 923R<7> exp<—7>, (21)
o0
__BR exp(—ﬁ> / X2, (X)X dX. where 2, = 0.1168. The positive sign af2, suggests that
A the force curves measured with the SFA are more repulsive
0 than one can expect for rigid surfaces. Unfortunately, in case
Thus of the SFA experiment, it is not so easy to recalculate the
AN 32 o measured force to the interaction free energy avecause
AF, = BR(—) exp(——).(zl, Eqg. (21) containg:, which cannot be explicitly presented
A as a function ofd. One can, however, always calculadte
where numerically, by solving Eq. (13).
00 00 ) ) The meaning of the second termin Eq. (21) can be under-
Q1= 32 //exp(—x +Y )w(X/Y)dedY. stood if one recogni;es th# can be e_xpressgd Vi€, (d)
g 2 by substituting/7 (H) into Eq. (19) and integrating by parts,
00 which gives
The integral$2;1 is more easily calculated using polar coor-
dinates(p, ) in the (X, Y) plane: BR P H
g P F, = F(d)——/( w) Xp<——>dr
oo /2 A o ar
2 2
_ 4 | —r¥22
& w2 /e prdp / ¥ (tand) cosy dv So, physically, this term reflects the change in slope near the
0 line-of-centers due to deformation.
_2ym/2x 1 11407 Some misleading ideas about the effect of small deforma-
= —0.28209 . :
72 tions on total force may have been obtained by casual read-
(The second integral has only a weak log singularity i~ ©rs of the publications [7,11], where the so called “slowly
7 /4.) Finally, the force is varying deformation approximation” (SVDA) has been in-
32 troduced. The SVDA is said to be valid when “deformation
= A 2h varies slowly compared to curvature” (quantities being nor-
Fe=Fe(h + 913R(f> exp(—T) malized) and postulates two assumptiong:) ~ wmax and

AN\3/2 F ~ F(d). As we have shown before [33], the condition

= Fe(h)[1+.(21(—) exp<——)}. (20) for small deformation is equivalent to that of small slope

A A (dw/dr <« r/R). This allows one to express pressure as the

All the techniques for force measurement measure the function of gap profileH, which, mathematically, resembles
real force, i.e., the force distorted by deformation and de- the tricks used to derive the Derjaguin approximation (7).
scribed by Eq. (20). In the AFM and MASIF experimentthe However, the resulting force is not proportional to the inter-
separation is not measured, being inferred from force—piezoaction free energy per unit area between planar walls sepa-
position data [21-25]. Strictly speaking, all these methods rated byd as was suggested in [11], being confined between
are not generally applicable. Therefore, here we simply use F, (k) andF,(d). Hence, in the SVDA the second term of the
the fact that the AFM/MASIF measurements are corrected expression for force described by Eq. (21) is lost, although
for separation, so that in the ideal situation the undisturbed it is neither zero nor negligible.



470 O.1. Vinogradova, F. Feuillebois / Journal of Colloid and Interface Science 268 (2003) 464-475

5

In summary, extra force due to deformation decays ex-

ponentially with separation, with a decay length half that of s

the original force. The sign of this elasticity contribution de- 4
pends on how the separation is detected: it can lead to either 350
less or more repulsive force compared with the case of rigid 3

surfaces ak or d respectively. Obviously the Derjaguin ap-
proximation (7) is no longer valid for elastic surfaces, but the <
interaction free energy per unit area can be obtained directly

with the approximation suggested here. 15F"

5. Discussion

In this section we give some numerical examples that il-
lustrate the above results and conclusions. We focus mostly
on double layer forces, because of their importance as a part
of the DLVO potential, and because of their repulsive char-
acter. We also confine ourselves to parameters typical of a
surface force experiment. The generalization of our results
to other types of exponentially decaying interactions or dif-
ferent experimental situation would be straightforward.

5.1. Repulsiveforces

Fig. 4 illustrates the effect of double layer forces on the
real separatio@ between the surfaces. Both the first order
(Eg. (13)) and second order (Eg. (B.1)) approximations are
represented. As shown above, the first order approximation
also is an upper bound. It is observed in Fig. 4 that the first
and second approximations become close and even practirig. 4. A piot of the real separatiaibetween solids at the point of closest
cally coincide for smalB (small|yr|), Fig. 4A, and large., approach against the undeformed separation. In the absence of deformation
Fig. 4B. For smalk, this even occurs outside of the domain 4 =" until contact (dots). Deformation effect is due to repulsive double
of small deformationi < h. This is an indication that the layer forces. Solid curves plot the first order, and dashed, the second order

. - . . L solution, respectively. Parameters assumed in the calculations are as fol-
domain of validity of the first order approximation is much /" e ctive radiusk = 1 om, elastic constart = 5 x 10-10 m2/N.
larger than anticipated from Fig. 3B. Details about this ex- (a) demonstrates the effect of potential, from top to bottos| = 50,
tension are presented in Appendix B. All these curves were 40, 30, and 20 mV, at salt concentrationk8.0~3 mol/L, giving a decay

computed for a typical SFA radius of curvatuR+£ 1 cm). length of A = 4.3 nm. (B) shows the influence of the salt concentration at
. . . . — it 3 3 —4
Similar calculations for a typical AFM sizeR(= 10 ym) Vol =40 mV. From top to bottom it is 10%, 5% 10,1073, 5x 104,
. . . ) . and 10~ mol/L, which correspond ta. equal to 3.0, 4.3, 9.6, 13.6, and
give neghglbly small deformation and practically coin- 30.4 nm.
cides withh.

The surface profiles for two elastic surfaces interacting
with an exponential repulsion are shown in Fig. 5 at various typical SFA experiment gives more accurate results than the
surface separations. For comparison, the undeformed surfacdMASIF experiment.
shapes are also plotted. The data are plotted in this manner Hydration forces observed between mica surfaces in
so that the profiles represent the shape of the fringes whichaqueous electrolyte solutions [15] are of roughly exponen-
would be observed during SFA experiments. One can seetial type and appear only at short distances. These forces
that as the surfaces approach each other they begin to flattenare nearly independent of electrolyte type and concentration.

Computed force curves for four different surface poten- There have previously been some arguments that surface de-
tials for the deflection (SFA) method and the force feedback formation did not account for the observation of hydration
(MASIF) method are shown in Fig. 6. As predicted, SFA forces [10], as well as arguments that the measurements of
measurements are more repulsive than the interaction freehydration forces are influenced by it [11]. The results ob-
energy, while the MASIF measurements are more attractive.tained within the assumptions of our model rather support
The same calculations performed with the typical radius of the former point of view [10]. However, we cannot exclude
the AFM colloidal probe suggest that there is practically no the possibility that for large deformation (i.e., when the ef-
elastic contribution to the total force. As before [12], the fect due to change in radius will be comparable to or more
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F/R, mN/m

F/R, mN/m

Fig. 6. Computed force curves for surfaces interacting with three differ-
£ um ent surface potentials: from top to bottopfg| = 50, 40, and 30 mV,
(B’) A = 1.4 nm (concentration 5 102 mol/L). Solid curves show the force
expected between the rigid bodies separated by distBnaashed curves
Fig. 5. Surface profiles for two surfaces interacting with a repulsive double correspond_to the force acting between elastic surfaces. (A) illustrates the
layer force:|vg| = 40 MV, 6 = 5 x 1010 m2/N, R = 1 cm. From top to SFA deflection method = d, R =1 cm,6 =5 x 10~ m2/N. (B) illus-
bottom / varies from 10 to 0 nm by steps of 2 nm. The circles represent (rates the MASIF feedback methdd=h, R =1 mm,0 = 1010 m?/N.
the undeformed profiles. The solid lines represent the deformed profile cal-
culated at first order for small deformatiow ((h + rZ/(ZR)) <0.1). The
dots represent the continuation of the preceding curves in the range where
(w/(h+r2/(2R)) > 0.1). (A) A = 3.0 nm (concentration & 102 mol/L); shapes. Shape changes are significant on the length scale
(B) A = 2.15 nm (concentration 2 10~2 mol/L). over which surface forces act. This has already been discov-
ered before for elastic solids [10] and drops [42,43] and is
made evident again here in Fig. 7B.
important than the distortion of the separation), the elasticity ~ This effect is best illustrated by the force curves shown

contribution could account for most of the observed differ- in Fig. 8. Since the calculations performed for a long-range

ence between DLVO theory and experiment. hydrophobic interaction do not reveal any effect of surface
deformation, we consider only a situation corresponding to a
5.2. Attractive forces short-range hydrophobic force. As expected, the deviations

from the force—distance profile expected for rigid surfaces
The cross-sectional surface separation for two surfacesare discernible at separations considerably larger than the
interacting with an attractive surface force are shown in decay length of the force. This effect alone, however, cannot
Fig. 7. The profiles are very different from those for a repul- predict a long-range tail of the hydrophobic force.
sive interaction. The computed profiles for the long-range  All conclusions of this subsection are made by assuming
part of the hydrophobic interaction are not disturbed by de- that the deflection technique can be used at any separation.
formation. In contrast, for the short-range hydrophobic in- In other words, we have ignored the possibility of the jump
teraction we see dramatic deviations from the undeformedinstability, i.e., the fact that at some separations the direct
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F/R, mN/m
&

Fig. 8. Computed force curves for surfaces interacting with a short range
exponential forceX =1 nm, B = —0.5 N/m). The solid curve shows the
force expected between rigid surfaces. Dashed curve corresponds to the
SFA deflection method =d, R =1 cm,0 =5 x 10-11 m2/N. Dots il-
lustrate the MASIF feedback meth@=h, R = 1 mm,0 = 10~10 m2/N.

6. Conclusion

We have calculated analytically the shape of elastic sur-
faces and the total force between them as they interact
through an exponentially decaying surface force, assuming
that the deformation is small. The effect of elasticity is found
to be especially important when the decay length of this in-
teraction is short (rapidly changing force), and the prefactor
is high (large force). The interaction force causes significant

Pl s : deformation which depends in a complex way on the nature
0 5 ‘Or!um 15 20 25 of the interaction and configuration geometry, and which
®) decays exponentially with the decay length of the original
force. Deformation, in turn, produces an additional exponen-
Fig. 7. Surface profiles for two surfaces interacti_ng with an at_traf:tive force tial force with half the decay Iength. All the force measure-
law. The circles represgnt the undeforme_d profiles. The solid lines repre- ment techniques measure the total force between surfaces
sent the deformed profile calculated at first order for small deformation . ) . a ) .
(w/(h + r2/(2R)) < 0.1). The dots represent the continuation of the pre- Which includes this elasticity contribution and do not cor-
ceding curves in the range where /(h + r2/(2R)) > 0.1). R = 1 cm, rect for error in the force due to deformation. The measured
6 =5 x 10710 m2/N. From top to botto: varies from 10 to 4 nm by - minimum separation is either real (SFA), i.e., including de-
itipf :;]2 nm. (A)B = —107% N/m, 2 = 10 nm; (B) B = —0.5 N/m, formation, or corrected (AFM/MASIF). Ironically, with the
' same experimental parameters, the correction for separation
leads to larger deviations of measured force from the force
that would act between rigid surfaces (interaction free en-
ergy). This reflects the fact that when deformation is small

measurement of the force presented in Fig. 8 could be im- ] | 7 .
possible. In the elastic system this could be mostly due to (and/or varies slowly with slope), the change in separation

a force measuring spring [19,44] and partly due to defor- due to deformation is more important than the change in ra-

mation itself [5,7,45,46]. We do not address the question of dius near the line-of-centers. We believe our results provide
a jump separalcio’n in the current paper. However, it should 2" important tool to correct the measured force between elas-

be stressed that our results mean that it would be wrong tolic Surfaces to the rue interaction free energy.

extrapolate the force vs separation curve obtained by mea-

suring the jump position to the region of short separations.

In this region, the real force is more attractive then it would Acknowledgment

follow from the jump method, with dramatic consequence

for adhesion and other phenomena influenced by the short- We thank R.G. Horn for remarks on the manuscript and
range attractive interaction forces. helpful suggestions.
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Appendix A. Expansion of theintegral in J, for small X
Let us find the expansion of,, defined in (10), for

smallX. Sincey(Z) has a logarithmic singularity & = 1,

we write it in two parts, one fron¥ =0 to X and one from

Y =Xtooo.LetZ=Y/X inthe firstpartand = X/Y in
the second part. Then

1
Jo(X) =X / exp<—
1
+X/_ex 22)0(2)az

Now from its definition, forZ # 0 the functiony satisfies

2X2

>¢(Z)dZ

(A1)

1 1
W<E> = EW(Z)v (A.2)
so that
1
72x2
JAX):X/exp(— 5 )1//(Z)dZ
0
; 1 X2
+X/?exp<—ﬁ>1//(2)dz. (A.3)
0

Let the first integral bé and the second one ble
A.l. Expansion of /

In the expression (5) providing the functian we will
use the definition of the elliptic integra,

/2
da
K(x)= / —_—
V1-—xsirfa
0
so that
/2

¥(Z) = / F(Z.a)da,

where
z
V(Z+1)2=4zsiPa

The integrall is first expanded irX; then each term in the
expansion is first integrated analyticallyhand then inx.

f(Z,a)= (A.4)

A.2. Expansion of J

The calculation of/ should be treated with care since
the integral becomes singular f&r — 0. This is a typical

473

expansion forf, Eq. (A.4), for smallX, which is written
symbolically as

2
> Bu(@)Z™ + R(a. Z).

f(Z, o) = (A.5)
m=1
Then
1
J= % p( 222) / f(Z,a)dadZ (A.6)
o
is written asJ, + J;, where
7/2 1
(A7)

contains the singular part.

As for J,, the integral with the exponential could not be
calculated analytically. But using a first order expansion of
the exponential for smak, thatis, replacing the exponential
by unity, we still have a convergent integral which can be
integrated analytically first i and then inx.

As for J;, the singularity in (A.8) is resolved in the classi-
cal way, using a stretched variatife= Z/ X. The integrals
in Z are convergent irZ = 0 because of the exponential;
they can be integrated analytically.

A.3. Result for I,

Analytical calculations give

I=1+0(x?), (A-9)
3
J,=—1~|—§n~|—0(X2), (A.10)
V2 35 3. W2
=YL S NZozpy X?). A1l
J " 8" " 16" + 0(X9) ( )

Itis seen that as a result of matching, which is performed by
simply adding up the parts of the integrél,= X (I + J, +
Js), some terms cancel out. The final result is

2m3/2 1
vor <1 Xz).

2 _Z

Jo ~ 3

(A.12)

To calculate higher order terms analytically, we have to
be careful that expanding the exponential to higher order in
(A.7) would give divergentintegrals idi = 0. ThusR(Z, )

singular perturbation problem. The singularity is extracted has to be more regular id = 0. The upper value: = 2 in

by using an expansion af for small Z. We then need an

(A.5) should be replaced by a higher value= M. Taking
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M =10, we could calculate with Maple computer algebra

Jo = @O— Iyay 3xa_ 5 xo
4 4 64 768
+ ixf*)
49152 ’
and the next term would be (X 19).

This quantity is plotted as dashed lines in Fig. 3B. It is ob-
served that the condition (B.2) is satisfied even in the domain
where(d — h)/ h (represented as solid lines in Fig. 3B) is not
necessarily small. This gives an indication that the range of
applicability of our first approximation is larger than that an-
ticipated from Fig. 3A.

Note also that using (15), the condition (B.2) may be
rewritten as

‘ R

(A.13)

1— —
Reff
Physically, this means that the area of applicability of the
We have calculated the deformation, assuming that thefirst order solution can be extended in case the change in
pressure is not disturbed. However, as we have shown, thecurvature is small enough.
deformation causes a change in the pressure. The calcula-
tion of the second order solution can be obtained by using

Appendix B. Second order approximation for

8T
L=~ 1.6662
maximum defor mation i

Eq. (18) instead of (6) in (3). Here we only estimate the max-
imum deformation, that is, the amount by which the central
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