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We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-
permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are
neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric
charge separation. This gives rise to a distance-dependent membrane potential, which translates into
a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson–Boltzmann
equation, we obtain the distribution of the potential and of ions. We then derive an explicit for-
mula for the pressure exerted on the membranes and show that it deviates from the classical van’t
Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive elec-
trostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We
also develop a simplified theory based on a linearized Poisson–Boltzmann approach. A comparison
with simulation of a primitive model for the electrolyte is provided and does confirm the validity
of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel,
this mechanism not only helps to control the adhesion and long-range interactions of living cells,
bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enor-
mous role in determining behavior and functions of systems bounded by semi-permeable membranes.
© 2012 American Institute of Physics. [doi:10.1063/1.3676246]

I. INTRODUCTION

It is hard to overestimate the role semi-permeable mem-
branes and osmotic equilibria associated with them play in
our everyday life. The best-known examples are the natural
biological membranes, which are highly impermeable to ions
due to their phospholipid bilayer structure, but become semi-
permeable when ion channels are open. Such lipid membranes
with channel proteins surround all biological (eukaryotic and
prokaryotic) cells.1 Many synthetic membranes used in elec-
trochemical fuel cells2 and dialysis3 take advantage of the
semi-permeability of their materials. The same concerns var-
ious types of synthetic vesicles,4–6 the promising gene and
drug carriers, as well as other systems used to mimic bio-
logical objects. Being in contact with ionic solutions, such as
gels, polyelectrolytes (including DNA, proteins, dendrimers),
micelles, or colloids, a semi-permeable membrane maintains
an unequal distribution of ionic solute concentrations, which
leads to an ion density gradient across the membrane, deter-
mines its actual potential, and generates an osmotic pressure
difference that the membrane has to sustain. This situation is
traditionally referred to as a Donnan equilibrium.7, 8

A great deal of research has been devoted to understand-
ing the Donnan equilibria and the pressure exerted on semi-
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permeable membranes. Although the problem was treated at
various levels of sophistication, traditionally the reservoirs
separated by a semi-permeable wall are assumed to be suf-
ficiently large, so that both solutions contain a phase with the
bulk properties. Our paper deals with another situation, when
two ionic electrolyte solutions consisting of large ions and
small ions (referred below to as counter-ions) are in equilib-
rium with a thin film bounded by the semi-permeable mem-
branes. As some mobile counter-ions will inevitably escape
from electrolyte solutions, at some separation their clouds
will begin to overlap and give rise the effect similar to the
celebrated Derjaguin disjoining pressure9 and will change
dramatically the Donnan equilibrium7 in the system. Some
experimental observations10 support this idea. However, to
our surprise, such a scenario, which represents enormous
interests for many biological and materials science prob-
lems associated with the membrane adhesion and long-range
interactions,11–13 and are also relevant to modern micro- and
nanofluidics,14, 15 has never been addressed before.16

In our previous papers, we made an attempt to calcu-
late an excess pressure on a semi-permeable shell in contact
with an inner17 or outer18 solution of polyions. Since a non-
linear Poisson–Bolzmann (NLPB) equation cannot be solved
analytically for spherical geometry,19 linearized Poisson–
Bolzmann equation (LPB) has been used. Our present pa-
per solves a pressure problem for a flat geometry of two
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interacting semi-permeable membranes. We first solve semi-
analytically a NLPB equation to evaluate the distribution of
electrostatic potential in the system. We then derive an explicit
expression for a pressure on the membranes and a disjoining
pressure in the gap between them. Our mean-field approach
is verified for monovalent salts by molecular dynamics (MD)
simulations. Simulation data fully support our theory.

Our paper is organized as follows. In Sec. II, some gen-
eral consideration concerning a theoretical description of an
interaction between two semi-permeable membranes are pre-
sented. Here we also describe a simplified linearized version
of the theory. Section III contains a description of our MD
simulation approach. In Sec. IV, simulation results are pre-
sented to validate the predictions of the theory.

II. THEORY

The geometry of the system under consideration is shown
in Fig. 1. A semi-permeable membrane is in contact with a
solution of polyelectrolyte composed of cations with an ef-
fective charge Z and concentration C, anions with charge z
and concentration c. We assume here that the polyelectrolyte
(here cations) cannot permeate through the semi-permeable
membrane, while their counter-ions (here anions) are free to
pass through it. The membrane is at distance h from another
membrane.

To make the formulas as transparent as possible, we keep
our analysis at the mean-field level by using the Poisson–
Boltzmann approach. This means that we treat ions as point-
like and neglect their correlations. In particular, while the re-
sults of the Poisson–Boltzmann theory to be discussed below
can be computed for any valence Z of the macromolecules,
correlations between macro-ions should be taken into account
in the limit of large charges Z in order to obtain quantitative
predictions. However, based on earlier results,18 one does not
expect the main physical picture to be altered in this case, and
we leave the study of this regime for a future work.

|x|

0 h/2

FIG. 1. An electrolyte solution in equilibrium with a thin liquid film of thick-
ness h bounded by neutral semi-permeable membranes. They are permeable
for small counterions only (here anions), while the larger solute (here cations)
are bounded to the region |x| > h/2. The membranes have to support an ex-
cess osmotic pressure �p(h) which is the sum of the bulk Donnan pressure
and an electrostatic disjoining pressure �(h) in the interlayer.

We consider a hypothetical case of an infinitesimally thin
and rigid membrane. We further assume that both membranes
are neutral, and axis x is directed normally to the surfaces with
x = 0 at the midplane of the gap. The membranes are located
at |x| = h/2. Our description thus essentially follows that of
the classical nonlinear Poisson–Boltzmann theory, except for
the fact that there is no charge per se on the membranes and
the membrane surface potential builds up self-consistently:
accordingly, the distribution of the charged species is a con-
sequence of the semi-permeable character of the membrane,
which leads to a steric charge separation.

A. Nonlinear theory

1. Potential

We first introduce the dimensionless electrostatic
potentials,

φi,o = zeϕi,o

kBT
, (1)

with the index {i, o} standing for “in” (|x| < h/2) and “out”
(|x| > h/2) of the confined slab.

The NLPB equation then reads as

�φo = −κ2
i (e−φo − e−Z̃φo ), (2)

�φi = −κ2
i e−φi , (3)

where the inner inverse Debye screening length, κ i, is defined
as κ2

i = 4π�Bc∞ with �B = z2e2/(4πεε0kBT), the Bjerrum
length, Z̃ = Z/z (<0), is the valence ratio of large and small
ions, and c∞ is the concentration of small ions far from the
membrane. The outer inverse Debye screening length, κo, can
be defined as κ2

o = 4π�B(Z̃2C∞ + c∞), where C∞ is the con-
centration of large ions far from the membrane. Obviously, it
represents the inverse Debye length of the bulk electrolyte so-
lution. Since the electroneutrality condition ZC∞ + zc∞ = 0

is employed, κo = κi

√
1 − Z̃. We stress, however, that for this

particular problem, the main reference length scale that deter-
mines the behavior of the system is κ−1

i , and this is reflected
in the analysis below.

The first integration gives a differential equation for φo,

1

2κ2
i

(
∂φo

∂x

)2

= e−φo − 1

Z̃
e−Z̃φo + A0, (4)

where the integration constant A0 is determined by the bound-
ary conditions at infinity: φo → 0 and ∂xφo → 0. Imposing
them on Eq. (4) yields A0 = 1

Z̃
− 1. Thus, the outer solution

φo can be obtained in terms of the membrane “surface” po-
tential φs = φ(h/2),

∫ φo

φs

dφ√
2
(

exp[−φ] − 1 − 1
Z̃

(exp(−Z̃φ) − 1)
)

= −κi

(
x − h

2

)
. (5)

Downloaded 17 Jan 2012 to 193.54.87.1. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



034902-3 Electrostatic interaction of membranes J. Chem. Phys. 136, 034902 (2012)

For the inner compartment, φi, the first integration of the
NLPB equation yields

1

2κ2
i

(
∂φi

∂x

)2

= e−φi − e−φm . (6)

Here we used ∂xφ(x = 0) = 0 implied by symmetry. This
leads to∫ φi

φm

dφ√
2 (exp[−φ] − exp[−φm])

= −κi x, (7)

with φm, the (dimensionless) potential at the center of the film
between membranes. This integral can be evaluated exactly as

2 arctan
[√

exp[−(φi − φm)] − 1
]

exp

[
φm

2

]
=

√
2κix,

(8)
leading to the Gouy-type expression

φi(x) = φm + ln

[
cos2

(√
2

2
e−φm/2κix

)]
. (9)

The continuity of the electric field at the membrane sur-
face, Eqs. (4)–(6) (no surface charge) leads to

e−φs − 1

Z̃
e−Z̃φs + 1

Z̃
− 1 = e−φs − e−φm . (10)

Altogether, the membrane potential φs and mid-plane po-
tential φm are thus given by the self-consistent equations,

φs = φm + ln

[
cos2

(√
2

2
e−φm/2κi

h

2

)]
, (11)

and

φm = − ln

[
1 + 1

Z̃
(e−Z̃φs − 1)

]
. (12)

In the general case, the derived equations should be
solved numerically while the in the limits of large and small
κ ih, we can also find the asymptotic analytical expressions. In
the thick gap limit, κ ih � 1, the midplane potential diverges,
φm → ∞, and the equation for φs, Eq. (12), can be simplified
to give

φs � − 1

Z̃
ln(1 − Z̃). (13)

This value represents the bulk Donnan potential.
Similarly, the asymptotic behavior for φm can be obtained

from Eq. (11). Since φs is bounded by a constant, the condi-
tion φm � 1 as κ ih � 1 imposes that

√
2

2 e−φm/2κi
h
2 � π/2.

This leads to

φm � 2 ln

[√
2

2π
κih

]
. (14)

In the thin gap limit, κ ih � 1, where the inner ionic
clouds strongly overlap, both φm and φs vanish. Such a
situation would be realistic for very dilute polyelectrolyte
solutions and/or very thin gap. One can easily verify that
φm � φs∝κ ih.

Thus, the convergence of two semi-permeable mem-
branes is necessarily accompanied by the decrease in the
absolute value of their potential. The idea that the constant

potential condition is not appropriate for fully permeable
charged membranes has been suggested before.20, 21 Now we
have shown that the potential of neutral semi-permeable sur-
faces should inevitably change and can even vanish as a result
of their approach. Such a finding might be especially impor-
tant for biomembranes, where an alteration of a surface po-
tential can lead to a characteristic biological response.

2. Osmotic and disjoining pressure

The force balance in each part of the membrane (in and
out) can be written as

− ∇p + ρcE = 0, (15)

with ρc, the charge density and E = −∂xφ, the local electric
field. Using the Boltzmann expressions for the charge den-
sities in terms of the local electrostatic potentials allows to
integrate this equation once.

In midspace between the membranes (|x| < h/2), this
leads to

pi(x) = kBT c(x) + p0, (16)

with c(x) = c∞exp [ − φ(x)], the counter-ion concentration
and p0 a constant.

In the outer space (|x| < h/2) one gets

po(x) = kBT c(x) + kBT C(x) + pL, (17)

with C(x) = C∞ exp[−Z̃φ(x)], the concentration of large
ions and pL the pressure of pure solvent.

At the membrane, there is a pressure drop due to the re-
pulsion force acting on the polyelectrolyte by the membrane
(and proportional to the difference of polyelectrolyte concen-
tration on the two sides of the membrane), i.e.,

po

(
h

2

+)
− pi

(
h

2

−)
= kBT C

(
h

2

+)
. (18)

This imposes p0 = pL, i.e., the solvent pressure, as expected.
The force acting on the membrane (osmotic pressure)

can be found from the Maxwell tensor T = (P + ε
2E2)I

− εE
⊗

E. Using ∇ · T = 0, we find the force per unit sur-
face on the membrane as �p = T (x = 0) − T (x = ∞),

�p = T (x = 0) − T (x = ∞)

= kBT c∞(1 − e−φm ) + kBT C∞. (19)

Note that by using Eq. (12), one can demonstrate that expres-
sion given in Eq. (19) is fully equivalent to Eq. (18). There-
fore, since the disjoining pressure, �, is defined via

�p = kBT (c∞ + C∞) − �, (20)

it can be expressed through the concentration (or potential) at
the mid-plane as

� = kBT cm = kBT c∞e−φm . (21)

In other words, the whole effect can be expressed through
the osmotic pressure of small ions in the mid-plane of the
gap where the electric field vanishes. Note that the simi-
lar physical interpretation of the disjoining pressure between
flat solid surfaces was given long ago in the famous work
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by Langmuir.22 Note that the disjoining pressure is always
positive indicating an electrostatic repulsion between neutral
semi-permeable membranes separating the similar electrolyte
solutions.

By using the expression of the disjoining pressure,
Eq. (21), we get in thick gap limit

� � kBT c∞
2π2

(κih)2 , (22)

i.e., � ∝ h−2. This is very similar to the famous Langmuir re-
sult, but here for an a priori uncharged semi-permeable mem-
brane.

In contrast, at small κ ih,

� ≈ kBT c∞. (23)

This suggests that the osmotic pressure in the gap is dramati-
cally reduced compared to the value expected in the bulk,

�p = kBT C∞ = 1

1 − Z̃
pid, (24)

with pid = kBT(C∞ + c∞), the “ideal” (bulk) osmotic pres-
sure. Accordingly, � = −Z̃/(1 − Z̃) pid in this limit. This is
one of the key results of our work.

B. Linearized theory

At low charge densities and low values of the elec-
tric potential, the description of the problem can be sim-
plified by linearization of the Poisson–Boltzmann approach.
The linear approximation for the local concentrations reads:
ci, o(x) = c∞(1 − φi, o(x)), and Co(x) = C∞ (1 − Z̃φo(x)).
Substituting them into Eq. (3), we get its linearized version
with the straightforward solutions,

φo = φs exp[κo(h/2 − |x|)], (25)

φi = 1 + (φs − 1)
cosh(κix)

cosh (κih/2)
. (26)

The electroneutrality of the membrane allows us to deduce

φs = κi

κi + κo coth (κih/2)
, (27)

φm = 1 − κo

κo cosh (κih/2) + κi sinh (κih/2)
. (28)

In the thin gap limit, the membrane potential vanishes
similarly to the nonlinear case. For large gaps, we get

φs � κi

κi + κo

= 1

1 +
√

1 − Z̃
. (29)

The value of this bulk Donnan potential is different from pre-
dicted by NLPB theory, Eq. (13).

We also note that the potential in the midplane at large
κ ih saturates, asymptotically approaching 1 (in contrast to its
divergence in the NLPB theory, cf. Eq. (14)). This is an evi-
dence of a failure of the linear theory in calculation of poten-
tials (and relevant ion profiles in the system).

Motivated by recent analysis,18, 23, 24 we then obtain the
following expression for the pressure,

po = pL + kBT (C∞ + c∞) + ε0εκ
2
oφ2

o

2
, (30)

pi = pL + kBT cm − zec∞(φi − φm) + ε0εκ
2
i (φ2

i − φ2
m)

2
,

(31)
which contains quadratic terms to provide thermodynamic
self-consistency of the linear theory.

Using these expressions, one can calculate the pressure
difference on both sides of the membrane to obtain25

�p = pid − kBT cm. (32)

As one can easily see, all the electrostatic terms cancel and
the whole effect is expressed by the osmotic pressure of small
ions in the mid-plane of the gap. In other words, physically we
have arrived to the same result as in the NLPB case. Clearly,
in the LPB case, cm = ci(x = 0) is very different, so that the
disjoining pressure takes the form

� = kBT c∞
κo

κo cosh (κih/2) + κi sinh (κih/2)
. (33)

For large κ ih, one can note some similarity to a repulsion
of solids,9, 26 which exponentially decays to zero as

� � kBT c∞
2κo

κo + κi

exp

(
−κih

2

)
, (34)

which obviously differs from NLPB result, Eq. (22). For small
κ ih, we again get Eq. (23).

III. SIMULATIONS

The Langevin dynamics simulations were performed on
the level of the primitive model with explicit large and small
ions using the ESPResSo simulation package.27 We con-
structed a 1D-periodic setup with two membranes fixed per-
pendicular to the x axis. The membranes were made imper-
meable for cations, but “invisible” for anions.28

For an initial illustration of our approach, we here use a
monovalent electrolyte, and ionic species were represented by
Lennard–Jones (LJ) spheres with a central charge Z = 1 or z
= −1. We used the repulsive Lennard–Jones potential with
the cut-off distance rc = 21/6σ :

ULJ(r) =
{

4ε
[(σ

r

)12 − (σ
r

)6 + 1
4

]
, r ≤ rc;

0, r > rc,
(35)

where r is the distance between centers of two particles. The
energy parameter ε controls the strength of the interaction,
and its value was fixed to ε = 1.0 kBT. The units of length and
energy in all presented data were set by σ and ε, respectively
(LJ units). The bead sizes were set as σ pp = σ cc = σ pc = 1.0.

The interaction of ions with the membrane was set by

ULJ(x) =

⎧⎪⎪⎨
⎪⎪⎩

4ε

[(σ
x

)12 − (σ
x

)6 −
(

σ
xc

)12
+

(
σ
xc

)6
]

,

x ≤ xc;

0, x > xc,

(36)
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FIG. 2. Side view of the film confined between two semi-permeable mem-
branes. Cations are shown by blue spheres and anions by the red spheres. One
can see that anions leak out into the gap between the membranes.

with the cut-off distance xc = 21/6σ .
The solvent was treated as a homogeneous medium with

a dielectric permittivity set through the Bjerrum length. The
electrostatic interaction between the ionic species was mod-
eled by the Coulomb potential,

UCoul(rij ) = kBT
�Bqiqj

rij

, (37)

where qi = ±1. In all simulations, we used �B = 1.
We modeled the systems in a rectangular cell with

side L ranging from 100 to 700 for different elec-
trolyte concentrations. The number of ions in the cell
was varied from Np = 500 to 15 000, and an equiv-
alent number of counterions was added. The number
of ions in each simulation was chosen to keep the
ionic concentration in center of the membrane fixed at
C∞ = 0.03 and to vary the value of κ ih in a very large range,
from 0.7 to 30.

Three-dimensional periodic boundary conditions were
used. For Coulomb interactions we used the P3M algorithm
with maximum relative accuracy of 10−5. A snapshot of the
system is presented in Fig. 2.

Pressure has been evaluated via integration of the LJ
force of cations, acting on the membrane walls,

F (x) = 4ε

(
12σ 12(

x − h
2

)13 − 6σ 6(
x − h

2

)7

)
. (38)

Using this force expression, we calculated the pressure as

p =
∫ h+21/6σ

h/2
C(x)F (x)dx. (39)

IV. RESULTS AND DISCUSSION

In this section, we present results of MD computer sim-
ulations and some example calculations based on the general
NLPB theory as well as the analytical LPB results.

FIG. 3. Midplane and surface potentials, φm (top curve), φs (bottom curve),
as a function of κ ih. The dashed line is the asymptotic behavior for φm in the
large κ ih regime according to Eq. (14): φm ≈ 2 log[κih

√
2/2π ]. Inset shows

zoom on the behavior of the surface potential versus κ ih. The dashed line
here is the asymptotic behavior for φs in the large κ ih regime according to
Eq. (13): φs ≈ − 1

Z̃
log(1 − Z̃). In these plots, we use Z̃ = 1.

The distribution of the electrostatic potentials, φs and φm,
is shown in Fig. 3 versus κ ih (symbols). Also included are
the exact theoretical curve, calculated with Eqs. (11) and (12)
(solid curves). The agreement is excellent for all κ ih, even
for very large values, confirming the validity of the mean-
field approach for our system. Asymptotic results are in agree-
ment with the numerical calculations presented in Fig. 3. At
κ ih � 1 (strong overlap of an inner double layer), the mem-
brane potential vanishes. Such a situation would be realis-
tic for very dilute solutions and/or very thin gap. Another
asymptotic limit of large films and/or concentrated solutions,
κ ih � 1 (no overlap of the inner ionic layers) gives Eq. (13),
which is fully supported by the simulation results.

These pressure trends are illustrated in Fig. 4. Simula-
tions show that at large κ ih, the pressure, �p/pid, supported by
the membrane, is close to the osmotic pressure of the corre-
sponding bulk solution �p/pid ≈ 1, and we deal with the stan-
dard bulk Donnan equilibrium. In this situation, the disjoining
pressure is negligibly small. At smaller κ ih, the pressure ex-
erted on the semi-permeable wall is much less than that in the
bulk, and at very small κ ih, it approaches a constant, which
is equal to the bulk osmotic pressure of large ions, Eq. (24).
This is accompanied by an increase in the value of a disjoining
pressure in the gap. The results for the pressure and the dis-
joining pressure obtained in the NLPB theory and simulations
coincide confirming the validity of the mean-field approach
for our system. Figure 4 also includes the theoretical curves
calculated within LPB theory. The agreement is quite good at
very small and very large κ ih, but at intermediate values of
κ ih, there is some discrepancy. The discrepancy is always in
the direction of the pressure on membrane is larger than than
“measured” in simulations and predicted by the NLPB theory.
Correspondingly, the disjoining pressure is smaller. Still, LPB
and simulation pressures are in surprisingly good harmony,
especially taking into account the simplicity of the model
and the complexity of the system. Obviously, the effects are
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FIG. 4. Pressure acting on a membrane and a disjoining pressure normal-
ized by the ideal osmotic pressure, pid = kBT(c∞ + C∞). Solid curves show
NLPB predictions, dashed curve shows LPB theory predictions, and symbols
present simulation results.

somehow included in the quadratic term of the expression for
a pressure which provided a self-consistency of the LPB the-
ory. These questions, however, deserve further investigation
and remain subject of a future work.

Finally, we note that all the results derived above hold
also for the case of a membrane placed at a distance h/2 from
the neutral wall suggesting that the tight adhesion of semi-
permeable membrane to the neutral wall is impossible within
our scenario. In general, for more complex systems, where
the membrane adhesion is controlled by the competition of
several effects, the physical mechanism we considered here
should reduce the attractive interactions by orders of magni-
tude similarly to what was predicted for other types of electro-
static interactions in the membrane systems.29, 30 It would be
also worthwhile to emphasize that our derivation can easily be
modified for the situation where a thin film separates the reser-
voirs with oppositely charged polyelectrolytes. In this case,
however, no attraction between semi-permeable membranes
takes place as it would be tempting to expect. The point is
that only solution for such a configuration is φ = 0. Hence,
all phases are homogeneous and neutral. This result can, how-
ever, still be of help when new synthetic delivery systems are
designed. For example, to avoid repulsion from the cell mem-

brane, a semi-permeable neutral container should contain pos-
itively charged molecules of drugs or proteins.

To summarize, we have examined theoretically the sit-
uation of an interaction of two neutral semi-permeable mem-
branes separated by a thin film. Our mechanism predicts an al-
teration of the membrane potential during the approach, a de-
crease in osmotic pressure on membranes when they are in a
close proximity, and an electrostatic repulsion between them.
Our analysis also allows one to express a disjoining pressure
in the film through the osmotic pressure of counter-ions in the
midplane.
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