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Anisotropic flow in striped superhydrophobic channels
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We report results of dissipative particle dynamics simulations and develop a semi-analytical theory
of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our ap-
proach is valid for any local slip at the gas sectors and an arbitrary distance between the plates,
ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel
thickness, and texture orientation to maximize a transverse flow. Our results may be useful for ex-
tracting effective slip tensors from global measurements, such as the permeability of a channel, in
experiments or simulations, and may also find applications in passive microfluidic mixing. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4718834]

. INTRODUCTION

Textured surfaces play a major role in microfluidics,
since the high surface to volume ratio enhances fluid-surface
interactions.! An important class of phenomena involve
“transverse” hydrodynamic couplings in anisotropic chan-
nels, where an applied pressure gradient or shear rate in
one direction generates flow in a different direction, with a
nonzero perpendicular component. Transverse hydrodynamic
couplings in pressure-driven flow through a textured mi-
crochannel were analyzed theoretically?= and applied to pas-
sive chaotic mixing in a herringbone grooved channel.?® Such
microfluidic devices have also recently been used to separate
or concentrate suspended particles.’

Here, we deal with a special (and different) type of sur-
face textures, namely, a superhydrophobic (SH) surface in the
Cassie state, where air micro- and nano-bubbles are favored,
and can generate a number of amazing properties,® includ-
ing a very large liquid slippage.”'® Such a slip also occurs
at smooth hydrophobic surfaces,'"'? but with a relatively low
amplitude, characterized by a slip length (extrapolated dis-
tance on which the liquid velocity vanishes) of the orders of
tens of nm or smaller.'>'® Due to a local slip length of tens
of um over gas regions the dramatic enhancement of slip at
such a superhydrophobic surface could be achieved'’2° and
may dramatically reduce viscous drag in a channel.

Directional SH textures generate the anisotropy of effec-
tive slip, which becomes a tensor, beg = {bfjff}, represented by
a symmetric, positive definite 2 x 2 matrix
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The tensor formalism allows us to easily change the ori-
entation of a texture, once a problem has been solved for a
given geometry. For all anisotropic surfaces its eigenvalues
b!ff and b correspond to the fastest (greatest forward slip)
and slowest (least forward slip) orthogonal directions.’ Note
that the concept of an effective slip length tensor is applied
for an arbitrary channel thickness,?! being a global character-
istic of a channel.!® A corollary of this is that the eigenvalues
depend not only on the parameters of the heterogeneous sur-
faces (such as local slip lengths, fractions of phases, and a tex-
ture period), but also on the channel thickness. However, for a
thick (compared to a texture correlation length) channel they
become a characteristics of a heterogeneous interface solely.’
In the general case of any direction ®, the anisotropy of ef-
fective slip means that the flow past such surfaces become
misaligned with the driving force. Therefore, anisotropic SH
textures can potentially be used to generate transverse hydro-
dynamic flow, which is of obvious fundamental and practical
interest. However, most of the prior theoretical work has fo-
cused on the maximization of the effective slip, and general
principles to optimize transverse phenomena have received
much less attention and have not yet been established.

Computer simulations might be expected to shed some
lights on a flow past anisotropic surfaces. Earlier molecular
dynamics (MD) simulations observed how modulations of hy-
drophobicity induce (small) variations in local slip at chan-
nels of finite thickness, but did not attempt to relate these to
effective boundary conditions.?”?* In efforts to better under-
stand the connection between the parameters of the texture
and the effective slip lengths, several other groups have per-
formed MD simulations of the flow past striped anisotropic
surfaces. Most of these studies considered a thick channel ge-
ometry, and focused only on calculating eigenvalues of the
effective slip-length tensor.”*?> There are however two sim-
ulations which are directly relevant. Recent work?® studied
the dependence of a ratio of transverse and forward effective
slip velocities on the flow orientation in a thick channel, but
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it did not explore the situation of a finite channel thickness.
It has been found that the theoretical predictions based on
a concept of tensorial slip consistently overestimated the re-
sults of MD simulations, which has been attributed to the fact
that the stripe width was comparable to the molecular size.
Other recent simulations?' used the lattice-Boltzmann (LB)
approach to calculate a flow in an asymmetric channel (i.e.,
with one SH and one no-slip hydrophilic wall) of arbitrary
thickness. This study confirmed that the eigenvalues of the ef-
fective slip-length tensor depend on the gap and validated the
concept of tensorial slip. An excellent agreement of LB re-
sults with a continuous theory gave a strong support to macro-
scopic arguments. However, no attempts have been made to
simulate the deflection of flow from the main direction, which
for an asymmetric SH channel was not expected to be very
dramatic.'®

The goal of the present paper, is to provide some gen-
eral theoretical results to guide the optimization of transverse
hydrodynamic phenomena in a symmetric channel with two
aligned striped SH walls. In the case of thin channels, sym-
metric striped walls provide rigorous upper and lower bounds
on the effective slip over all possible two-phase patterns?’
and are expected to generate very strong transverse flow,”
which could lead to very efficient mixing upon spatial modu-
lation of the texture. Here, we consider a channel of arbitrary
thickness, and optimize its orientation to maximize pressure-
driven transverse flow. Our consideration is based on theoret-
ical analysis and dissipative particle dynamics (DPD) simu-
lations. By using relatively wide stripes as compared with a
recent MD study®® we find that our results are in a very good
quantitative agreement with the macroscopic theory.

Il. MODEL AND GENERAL CONSIDERATION

We consider a channel consisting of two equal symmet-
ric SH walls located at y = 0 and y = H and unbounded in
the x and z directions as sketched in Fig. 1. The origin of the
coordinates O is placed in the plane of a liquid-gas interface
at the center of the gas sector. The x axis is defined along
the pressure gradient. As in previous publications,? ?%26,29:30
we model SH plates as flat interfaces with no meniscus cur-
vature, so that they appear as being perfectly smooth with a
pattern of boundary conditions. The latter are taken as no slip
(b1 = 0) over solid/liquid areas and as partial slip (b, = b)
over gas/liquid regions. In this idealization, by assuming a
flat interface, we neglect an additional mechanism for a dissi-
pation connected with the meniscus curvature.?'>> The frac-
tion of the solid/liquid areas is denoted as ¢, and that of the
gas/liquid areas as ¢, = 1 — ¢;.

The flow is governed by the Stokes equations

nV?v=Vp, V.v=0, 3)

where u is the velocity vector, and the average pressure gra-
dient is always aligned with the x axis direction,

(Vp) =(=0,0,0). “
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FIG. 1. Sketch of the symmetric striped channel (a) ® = 7/2 corresponds
to transverse stripes, ® = 0 to longitudinal stripes; (b) situation in (a) is
approximated by a periodic cell of size L, with equivalent flow boundary
conditions on the gas-liquid and solid-liquid interfaces.

The local slip boundary conditions at the walls have the form
av R
v(x,0,z) =b(x,2)- 5()@ 0,2), §-v(x,0,2)=0. (5
In addition, a symmetry condition applies at the mid channel,
av .
@(x,H/lz):O, y-vx, H/2,2) =0. (6)

Here, the local slip length b(x, z) at the SH surface is generally
a function of both lateral coordinates.

The effective slip length b at the SH surface is defined
as usual,

(vs)

befr = W

where (...) denotes the average value in the plane xOz. It can
equivalently be defined via a permeability tensor

H? besr
k=—|I4+6—). 8
5 (165 ®)
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In the linear response regime, the averaged flow rate, (Q),
is proportional to (Vp) via the permeability tensor, k,

1
Q) = —;k- (Vp), ©))
which may be rewritten as
(0), = Z(k! cos? © + k' sin ©), (10)
n

(Q), = z(kH —k*)sin®cos O. (11)
n
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Integrating the velocity profile across the channel we
obtain

H
Q) =/O {(v(y)) dy, (12)
or
H
(Q)x =f0 (vx(¥)dy, (13)
H
(Q): 2/0 (v:()dy. (14)

The above formulae are valid regardless of the thickness
of the symmetric SH channel and are independent of the de-
tails of the textured surface. There could be arbitrary patterns
of local slip lengths, and the latter could itself be a spatially
varying tensor.

lll. THEORY FOR STRIPED PATTERNS

To illustrate the general model, in this section we fo-
cus on flat patterned SH surfaces consisting of aligned peri-
odic stripes, where the local (scalar) slip length b varies only
in one direction. We mostly follow the approach developed
before,?! but apply the method to a symmetric channel situa-
tion as sketched in Fig. 1, where the surfaces are covered with
arrays of gas/liquid stripes with width § and period L. Thus,
¢1 =1 — 6/L and ¢, = &/L, respectively.

For transverse stripes, the flow is two-dimensional
v = (ve(x, ), vy(x,¥),0), ve(x,0)=>b(x)d,ve(x,0), and
vy(x, 0) = 0. For longitudinal stripes, we also have a plane
flow, v = (vi(y,2),0,0), ve(0,2) = b(2)d,v,(0, z). As the
problem is linear in v, we seek for a solution of the form

v=v" 4 v (15)

where v is the velocity of the usual no-slip parabolic
Poiseuille flow

vO = (;—ny(H - .0, O) ) (16)

and v is the SH slip-driven superimposed flow.

A. Longitudinal stripes

In this situation the problem is homogeneous in x direc-
tion (8/0x = 0). The slip length b(x, z) = b(z) is periodic in z
with period L. The elementary cell is determined as b(z) = b
at |z| < 6/2, and b(z) = 0 at §/2 < |z| < L/2. In this case, the
velocity v = (v, 0, 0) has only one nonzero component,
which can be determined by solving the Laplace equation

v2u(D(y, z) =0, (17)

with conditions (5)—(6).
The Fourier expansion of a periodic solution satisfy-
ing (6) reads

[e.¢]
a , —
v(y, 2) = —20 + Y aycos(hpe M1 + P,

n=1

(13)
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with A, = 2mn/L. The sine terms vanish due to symmetry.
Applying (5) we then obtain a trigonometric dual series,

o0
%—}— Zan[l—f—bkn tanh(A, H/2)] cos(A,2) = b, |z] <6§/2,

n=1

(19)
o o0
70 + ;an cos(A,2) =0, §8/2<z| <L/2, (20)
where
2nag 2na,(1 + e M)
oy = ;o g =————, n=1
oH oH

The dual series (19) and (20) provide a complete description
of the hydrodynamic flow and the effective slip length b!ff
= ap/2 (due to Eq. (12)) in the longitudinal direction, given
all the stated assumptions. These equations can be solved nu-
merically, but exact results can be obtained in the limits of
thin and thick channels.

For a thin channel, H < L, we can use that tanh#|; _, ¢
= O(?). By substituting this expression into (19) and keeping
only values of the first non-vanishing order, we find

I 12
b, =T [ bdz = ¢ob. Q1)

5/2

This is an exact solution, representing a rigorous upper
Wiener bound on the effective slip over all possible two-phase
patterns in a thin channel.?’

In the limit of a thick channel, H > L, we can use that
tanh (f — o0o0) — 1 and the dual series (19) and (20) can be

solved exactly, giving®?
(7))
In | sec -
plo~= (22)

i 1+ % In [sec <7TT¢2> + tan (%d’z)]

B. Transverse stripes

To describe a two-dimensional flow in this case we use
a standard technique and introduce a stream function ¥ (x, y)
and the vorticity vector @(x, y). Thus, the velocity field is rep-
resented by v(x, y) = (dy/dy, —0y/dx, 0), and the vortic-
ity vector, w(x, z) = V x v = (0, 0, w), has only one nonzero
component, which is equal to

w = —V2y. (23)

The solution can then be presented as the sum of the base
flow with homogeneous no-slip condition and its perturbation
caused by the presence of stripes as

oyl oHy?
V=——"=+——"+1 (24)

no n 4

o oH

w=—-y— —+w. 25)
] 2n
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The problem for ¥| and w; reads
Vi Vi =0, (26)

which can be solved with respect to the boundary conditions
(5) and (6) and an additional condition that reflects our defini-
tion of the stream function,

Yi(x,0)=0. (27)

The general solution reads

Yi(x,y) = Poy

y ,
N Z < pir_ MY x_> Y cos hux

n

)
+ Z ( PP 4 %) eV cos Apx, (28)

n

= —wy,

o0
Z (MDY + MPe*1Y) cos(hax).  (29)

n=1

wl(x’ y) =

The following relations between Fourier coefficients may be
established:
P(l) P(2) =-P,

MO —

n

ar, .
— sinh(A, H /2)e 12 p,

4
M? = 7 sinh(x, H /2)e* 12 p,.

Again we obtain a dual series problem, which is similar
to (19) and (20),

[o4)) >
> +Zan[1+2bAnW(AnH)] cos(Ax) =b, 0 <x <38/2,

n=1

(30)

o0
% + Zan cos(Ax) =0, /2 <x=<L/2. (31)

Here,
o 2n
30 = bl = P (32)
2 inh(A,, H
o = —"~2<M—An) Pn>1, (33)
oH H
and
W) = cosh(r) — 1 (34)
T sinh() — ¢

In the limit of a thin channel one has W(f)|;_.o =~ 3¢~!
+ O(t), from which it follows that
bH¢p,
bl yor = (35)
H + 6b¢,
This exact equation represents a rigorous lower Wiener bound
on the effective slip over all possible two-phase patterns in a
thin symmetric channel.?’
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For completeness we discuss again the two limiting
situations,

1¢
bilnas = 5¢—jH « H, (36)

balpc«r = b o b. (37

In the thick channel limit, the dual series (30)and (31)
take the same form as in prior work'® (due to W(t — o0)
— 1), whence we derive®

L In |:sec (%@>i|
b~ = . (38)
27 1+ % In |:sec (HT¢Z> + tan <n7@>i|

C. Transverse flow

The tensorial nature of the effective slip is physically due
to secondary flows transverse to the direction of the applied
pressure gradient. Now we focus on transverse flow optimiza-
tion, which is necessary for a passive mixing in a symmetric
SH channel. Our aim is to optimize the texture, channel thick-
ness, and the angle ® between the directions of stripes and the
pressure gradient, so that |[(Q,)/(Q,)]| is as large as possible.

Following the approach,'? one can derive

Q). 6(beff b sin © cos ©
(Q)y  H 46D cos?® + 6bL sin ®

Consider now the tilt angle, ®, confined between 0 and /2
and rewrite Eq. (39) as

6(£% — 1
p (O _ @-vr
(O)x  (h?+68%) + (h? + 6)1?
where 7 = tan ©, £2 = bl /bk., and h> = H /b By evalu-
ating dF/dt = 0, we find that the maximum occurs at

F

(39)

2 2\ /2
r = ano, = <—hh2++6§ ) , (1)
and its value is
_ -
T = e F e + o1 @2

In the limit of a thick channel, H > L, h — oo (owing
to the fact that blt is limited by the local slip length b and
independent of H for that case), and Eq. (41) gives

tan Oulpsy =1, Oulys, > 7/4, 43)
and, correspondingly,
36° -1
F(t)lu/i—00 = Gz = O(L/H). 44

Therefore, the mixing in a thick symmetric SH channel would
be not very efficient. According to our formula, to maximize
[{Q;)/{Qy)] an efficient strategy would be to use striped tex-
tures with largest physically possible b and a very low fraction
of a solid phase, ¢, — 1.
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When the channel is thin, H < L, the interplay between
b and H gives two possibilities. First, if b << H <« L, the slip
length is isotropic, bé-ff =bpr(1 —6¢1b/H) =~ blﬁ, and A2
= H/(b¢,) > 1, & ~ 1. Therefore, again @« >~ 7/4, yet the

value
F(ty) >~ 18¢1—¢2192 =0 ([2}2) (45)
H? H
is negligible. Then, for H < min {b, L} we get
h? ~ 6¢,/¢1 = const,

g2 =6b¢,/H > 1.

Substitution of these expressions into Egs. (41) and (42) gives

6bp1 \ 2
tan Ol g «mingp, 1) = (%) , (46)
1 (6bdi1r\"?
F()l g mingp, 1y = 3 <%) > 1. 47)

Since ¢y = (1 — ¢p2)¢, is maximal for ¢, = ¢ = 0.5, the
direction of optimal inflow angle is

2

which coincides with the results of Ref. 28 derived by using a
different method.

T 2H\?
Oulgaminp, L) = =5 — (g) , (48)

IV. SIMULATION METHOD

Our simulations are done using DPD, an established
method for mesoscale fluid simulations, which is fully off-
lattice and particle based and naturally includes thermal
fluctuations.>3¢ More specifically, we use a DPD version
without conservative interactions, and combine that with a
tunable-slip method that allows one to implement arbitrary
hydrodynamic boundary conditions.’” The detailed imple-
mentation of the tunable-slip method can be found in Ref. 37.
In the following, we only give a brief description and intro-
duce the simulation parameters.

In the tunable-slip boundary approach, the interaction be-
tween the channel walls and the fluid particles has two contri-
butions. The first is a Weeks-Chandler-Andersen (WCA) in-
teraction to mimic the impermeable surfaces,

4e[(9)2 = (0P + 11y < 2%

, 49
0, y > 21/64 9

u(y) =
where y is the distance between the fluid particle and the wall.
This is just a Lennard-Jones interaction with a cutoff at the
potential minimum, corresponding to the pure repulsive part
of the potential. In the following, the WCA parameters will
set our simulation units, i.e., the energy unit € and the length
unit o. The third unit is the particle mass m. The second part
of the wall-fluid interaction is a coarse-grained friction force,
which is introduced in a similar spirit than the DPD approach.
Specifically, the effect of the wall friction on ith particle is
implemented by introducing a pair of Langevin-type forces,

Frol = FP 4 FR, (50)
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The dissipative contribution has the form

F,'D = —yLoL(@)(Vi = Vyan)- (51)

This force is proportional to the relative fluid velocity with
respect of the wall, and the proportionality factor is the local
viscosity yrwr(z). The position-dependent function wy(z) is
a monotonically decreasing function of the wall-particle sep-
aration, and vanishes when the fluid particle is further away
from the wall than a cutoff distance z.. In our simulations, we
take wy(z) to decrease linearly from 1 to 0. The prefactor y,
characterizes the strength of the wall friction and can be used
to tune the value of the slip length. A random force obeying
the fluctuation-dissipation theorem is required to ensure the
correct equilibrium statistics,

FR = &,./2kp Ty 0 (2), (52)

where each component of §; is a Gaussian distributed random
variable with zero mean and unit variance.

The simulations are carried out using the open source
simulation package ESPResso.’® All simulations are per-
formed with a time step Ar = 0.01/m/ec, and the
temperature of the system is set at kg7 = le. The fluid has
a density p = 3.750 3. Fluid particles have no conservative
interactions, they interact only with the dissipative part of the
DPD interactions. The DPD interaction parameter is chosen
at yppp = 5.03/me/o and the cutoff radius is 1.0o°, which
results in a shear viscosity of n, = 1.35 £ 0.01/me /0.

The slip length b can be calculated analytically as a func-
tion of the simulation parameters (the wall friction parame-
ter ¥ and cutoff r.) to a very good approximation. For the
purpose of this work, however, we need highly accurate val-
ues for both b and the position of the hydrodynamic bound-
ary, therefore, we determined it with the method described in
Ref. 37 by simulating plane Poiseuille flow and plane Couette
flow. Figure 2 shows the relation between the slip length and
the wall friction parameter y,, for a wall interaction cutoff
r. = 2.00. By setting the wall friction parameter y;, we can
adjust the slip length to arbitrary values. The no-slip bound-
ary condition is implemented with y; = 5.26./me/o. The

350 T T T ———r
05 T T T T T
300 ¢ 0.4 =4 A
8% = 4
250 OE) S\\ 4
200 o1 r e
% 150 _82 L1 |\:\T"|~-4 1
100 2345678910 |
50 -
0 b
50 L R RN

0.01 0.1 1 10
1. [(me) /o]

FIG. 2. The relation between the slip length b and the wall friction parameter
y L, for a wall interaction cutoff 2.0c . The inset shows an enlarged portion of
the region where the slip length is zero. The no-slip boundary condition can
be implemented by using y; = 5.264/me/o. Dashed curves show analytical
predictions.?”
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position of the hydrodynamic boundary, was determined to
be 1.06 & 0.120 away from the simulation wall.

For simulations of patterned surfaces, we use a box
of 200 x (H + 20) x 50c. The two impermeable sur-
faces lie parallel to the xz plane and are separated by a dis-
tance H + 2o. Periodic boundary conditions are assumed in
the xz plane in the directions parallel and perpendicular to
the stripes. We have tested that increasing the simulation box
does not change the outcome. The surfaces are decorated by
alternating no-slip and partial-slip stripes. The pattern has a
periodicity of L = 50c. The wall friction parameters are cho-
sen y; = 5.26,/me /o, which implements a no-slip bound-
ary condition, and y; = 0.02820./me /o, corresponding to
b = 500. A simulation system is completely specified by the
following parameters: (L, b, ¢», H).

The simulation starts with randomly distributed DPD par-
ticles. An external body force is assigned to each particle to
mimic the pressure gradient. The amplitude of the force is
adjusted such that the maximum shear rate at the surface is
y = 0.01y/m/ec?. Small shear rates are necessary to avoid
shear-rate dependencies of the slip length® and reduce inertia
effects. With these parameters, typical Reynolds numbers in
our system are still of order 10, which is much larger than typ-
ical values in microfluidic setups. To reach realistic Reynolds
numbers, one would have to reduce the body force by four
orders of magnitude. Unfortunately, the necessary simulation
time for gathering data with sufficiently good statistics would
then increase prohibitively, since the values of the relevant
observables become very small and the correlation times in-
crease with 1/y. Test runs with selective parameters were
performed using a smaller body force, but the results did not
change significantly. Therefore, we chose to work at these rel-
atively high Reynolds numbers (we are still deeply in the lam-
inar regime), and tolerate slight inertia effects, which we will
discuss further below.

One important criterion for a correct simulation of the
pressure-driven flow is a constant density profile. Figure 3(a)
shows an example of the fluid density profile for p = 3.750 3.
The channel has a thickness of H = 500 . The periodicity of
the striped pattern is L = 500, and the partial-slip part has a
slip length of b = 500 and area fraction ¢, = 0.5. The fluid
density is uniform in the middle of the channel and drops
to zero in the proximity of the wall due to the repulsive in-
teraction of the wall on the fluid particles. This leads to a
physical wall position which is ~1.00 away from the sim-
ulation wall. The quoted value of channel thickness H is the
separation between the physical walls. In contrast to earlier
MD simulations,? there are no molecular layering effects and
density oscillations near the walls, because our DPD particles
have no conservative interactions.

Figure 3(b) shows the averaged velocity profile for the
same system. The system is allowed to run up to 5 x 103
time steps to reach a steady state, and the velocity profile is
then averaged over long time intervals (up to 10* time steps)
with horizontal bins of thickness Ay = 0.02¢. Close to the
wall, the velocity is zero because no particles are present in
that region. In the middle of the channel, the velocity profile
exhibits a parabolic shape, such that we can fit the velocity to
a plane Poiseuille flow and obtain an effective slip length. The
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FIG. 3. Typical density (a) and velocity (b) profiles simulated for a longitu-
dinal flow and a texture with L = H = b = 500, ¢ = 0.5.

fitting function we used is

ext

2n;

v(y) = (v5 — ¥* + 2by). (53)
where F**! is the external force applied to each DPD particle
to induce the pressure gradient. For the position of the hydro-
dynamic boundary yg, we use the value obtained from simula-
tions for homogeneous surfaces (1.06 + 0.12¢ from the simu-
lation wall). We assume that the position of the hydrodynamic
boundary remains the same for striped surfaces. The values
of (Q), and (Q), are then computed with Eqs. (13) and (14).

V. RESULTS AND DISCUSSION

In this section, we present the DPD simulation results and
compare them with predictions from the continuous theory.
Throughout the section, we use striped patterns with period-
icity L = 500 and slip length b = 500 on the slippery areas.
We study the effect of varying the film thickness H, the an-
gle ® between the applied force and the stripes, and the area
fraction ¢, of slippery areas.

We start with varying ® in a system where the stick and
slip areas are equal, ¢, = 0.5, which corresponds to maximum
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0 /4 /2

beri™ []

(b) o

FIG. 4. The effective downstream slip length, bé;f) , as a function of tilt angle

® for a pattern with L = b = 500 and ¢, = 0.5. Symbols are simulation
data. Solid lines are theoretical values calculated using Eq. (54) with eigen-
values obtained by a numerical solution of Egs. (19), (20) and (30), (31),
(a) H = 500. The thick channel limit (dashed line) is calculated with
Eqgs. (22) and (38). (b) H = 100 . The thin channel limit (dashed line), is cal-
culated with Egs. (21) and (35).

transverse flow in a thin channel situation.”® Figure 4 shows
the results for the effective downstream slip lengths, bgf) ,
as obtained from Poiseuille fits (53) to the x component of
the velocity vy, for two values of the channel thickness, H
= 500 and H = 100. We emphasize that in both cases
we formally have an intermediate channel situation, since
H/L = O(1). The error bars have been obtained from averag-
ing over five independent runs. Since we model an infinitely
extended slit by virtue of applying periodic boundary condi-
tions in the xz plane, the downstream slip length in our system,
bé’f‘f), corresponds to b°. (In channels that are confined in the
y direction, a transverse pressure builds up that renormalizes
béffcf)_s) Figure 4 also includes a theoretical curve calculated
using Eq. (1), which can be explicitly written as

b = bl cos? @ + b sin> ©. (54)

Here, the eigenvalues of the slip-length tensor are obtained
by numerical solution of the dual series, using the procedure
described in Ref. 21. Also included in Fig. 4 (dashed curves)
are the xx components of the effective slip length tensor cal-
culated in the limit of thick [Fig. 4(a)] and thin [Fig. 4(b)]
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FIG. 5. The ratio (Q)./(Q)x as a function of the tilt angle ® obtained with
Eq. (39) for the data sets from Fig. 4 for (a) H = 500 and (b) H = 100.
Symbols are simulation data, solid curves represent theoretical values, and
dashed curves show asymptotic predictions in the limit of thick channels (a)
and thin channels (b).

channels. These indicate the range of 5 in this (symmetric)
channel geometry.

The simulation data are in a good agreement with the-
oretical predictions, confirming the anisotropy of the flow
and the validity of the concept of a tensorial slip for arbi-
trary channel thickness.?! Most notably, the effective slip is
larger for thinner channels, somewhat in contrast to previ-
ous findings for asymmetric channels, where the magnitude
of the effective slip length in a thin gap was much smaller
than that in a thick channels.?'~>*-3" This means that transverse
hydrodynamic phenomena should be enhanced in thinner
channels.

The development of transverse flow is illustrated in
Fig. 5, where the data for the ratio (Q),/{Q), of the measured
averaged longitudinal and transverse flow rates at different ®
are presented and compared with the theoretical prediction
of Eq. (39). The simulation data and the theoretical predic-
tion agree quite well. There are some discrepancies at inter-
mediate angles ®, where the simulation data for (Q),/(Q),
are smaller than predicted by theory. These slight deviations
are most likely a result of the finite Reynolds numbers, which
are of order O(10) in the present simulations as discussed in
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FIG. 6. The eigenvalues of the effective slip length tensor (symbols) as a
function of ¢,. Solid curves are theoretical values obtained by a numeri-
cal solution of Eqgs. (19), (20) and (30), (31). Calculations were made for
a pattern with L = b = 500, (a) H = 500. Dashed curves are calculated
with Eqgs. (22)and (38), (b) H = 100. Dashed curves are computed with
Egs. (21) and (35).

Sec. IV. When increasing the bulk force and hence the av-
erage flow velocities, the deviations increase, thus they will
presumably vanish in the Stokes limit. A pressure gradient in
eigendirections cannot produce any transverse flow (and the
tensorial boundary condition reduces to a scalar one), which
is well seen in Fig. 5. In all other situations the direction
of flow is different from that of the pressure gradient. The
maximum value of (Q),/(Q), is smaller for the larger channel
(Fig. 5(a)). In this case, this maximum is reached at ® = /4,
which agrees with theoretical calculations made with Eq. (43)
for a thick channel. For the thinner channel, however, the
maximal (Q)./{(Q), is observed at larger ® (Fig. 5(b)), also in
agreement with the theory (see discussion above). An impor-
tant conclusion from these results is that the surface textures
which optimize transverse flow differ significantly from those
optimizing effective (forward) slip. Similar predictions have
been made for other channel configurations.!'®28

Next we examine the effect of varying the fraction of slip-
pery gas/liquid phase, ¢,. Figure 6 shows the eigenvalues, b!ff
and bz, of the slip-length tensor as a function of ¢,. The two
data sets again correspond to different thickness of the chan-
nel, H = 500 and H = 100. The results clearly demonstrate
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FIG. 7. The ratio (Q)./(Q)x as a function of ¢, obtained with Eq. (39) for
® = /4 by using the data sets from Fig. 6 (a) H = 500 and (b) H = 100.
Symbols are simulation data, solid curves represent theoretical values, and
dashed curves show asymptotic predictions in the limit of thick channels (a)
and thin channels (b).

that ¢, is the main factor determining the value of effective
slip, which significantly increases with the fraction of the slip-
pery sectors. The theoretical curves match the simulation data
very nicely.

To illustrate the effect of ¢, on the transverse phenom-
ena, we now fix ® = /4 and measure (Q)./(Q).. The simula-
tion data presented in Fig. 7 show that the maximum value of
(0)./{Q), is observed at ¢, > 0.5 and depends on the chan-
nel thickness. As discussed above, ¢, = 0.5 results in max-
imum transverse flow in a thin channel (thin compared to
the period of the texture).?® For thick channels, the contin-
uum theory predicts maximal transverse flow at ¢, — 1. The
simulation data, obtained for two values of H, confirms these
trends. Figure 7 also illustrates that transverse phenomena are
more efficient in a thinner channel. The data sets in Fig. 7
are in quantitative agreement with predictions of the contin-
uum theory. Only for the thick channels and ¢, > 0.5 we ob-
serve slight deviations, which again presumably reflect inertia
effects.

The simulation and theoretical data presented in Figs. 4
and 6 show that the eigenvalues of the slip-length tensor de-
pend on the channel thickness H, in agreement with earlier
predictions.?! To examine this dependence in more detail, we
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FIG. 8. The longitudinal (a) and transverse (b) effective slip lengths as a
function of the channel height H for a texture with L = b = 500 and ¢ = 0.5.
The theoretical curves are obtained by a numerical solution of Egs. (19), (20)
and (30), (31). Dashed lines show expected asymptotics in the limit of thin
and thick channels.

now fix ¢, = 0.5 and vary H in a large range. The smallest gap
was taken to be H = 5o, for smaller gaps the velocity profile
can no longer be resolved satisfactorily. The largest thickness
was chosen to be equal to L = 500. The eigenvalues of the
slip-length tensor are shown in Fig. 8. Also included are con-
tinuum theoretical calculations (solid curves) and asymptotic
values (dashed curves) expected in the true limits of thin and
thick channels. The data show that the longitudinal effective
slip decreases with H. In contrast, the transverse effective slip
increases with H, so that the difference between two eigen-
values is largest for thin channels. We remark and stress that
the effective slip reaches the asymptotic values predicted for a
thick channel already at H = O(L). A similar observation was
made in Ref. 21 for asymmetric channels. This result is re-
markable since it suggests that the thick channel limit, where
the effective slip is a property of single interfaces and does not
depend on H, is already reached for channels whose thickness
is of the order of the texture period. In practice, this implies
that huge simulations with large simulation boxes are not nec-
essary to determine the effective hydrodynamic behavior in
such systems. We note, however, that even for the smallest
gaps considered here (H/L = 0.1), our theoretical and sim-
ulation results still deviate strongly from the upper Wiener
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(Q@)/Q)x

H[o]

FIG. 9. The ratio between the transverse and longitudinal flow rates
(Q)./{Q)x as a function of channel thickness H for a pattern with L = b
= 500, ¢o = 0.5, and ® = 7/4. Symbols are simulation data and the lines
represent theoretical values obtained using Eq. (39). Dashed lines show ex-
pected asymptotics in the limit of thin and thick channels.

bound, Eq. (21), although they are very close to the lower
Wiener bound, Eq. (35).

Figure 9 shows the corresponding simulation and theo-
retical data for (Q)./(Q). as a function of channel thickness
H. The stripe texture is the same as in Fig. 8, i.e., ¢, = 0.5,
and the tilt angle was chosen ® = 7/4. As discussed above,
this angle leads to a maximal transverse flow in case of a thick
channel, but not in the thin channel situation, where a much
larger angle is required to optimize the transverse phenom-
ena. Nevertheless, (Q),/(Q), increases dramatically, when the
channel becomes thinner. With our range of parameters, how-
ever, we are still well below the limiting value of (Q)./(Q).,
which would be expected in case Wiener bounds were
attained.

Finally in this section, we show the measured velocity
profile in a channel with stripes inclined at the angle ® = /4
with respect to the applied force (Fig. 10). The velocity pro-
file results from superimposed flows in the x (forward) and
the z (transverse) directions (also shown). As above we use
H = 100 [Fig. 10(a)] and H = 500 [Fig. 10(b)]. The data
show that the effective velocity direction is generally mis-
aligned with the force vector, and this effect is much more
pronounced for a thin channel due to a larger transverse com-
ponent of the velocity. The flow has the form of a superim-
posed no-slip parabolic Poiseuille flow and a slip-driven plug
flow everywhere in the thin channel. In case of a thick chan-
nel the flow near the surface is different from that in the cen-
ter of the channel. To examine this more closely, the short-
distance region of the flow from Fig. 10(b) is reproduced in
Fig. 10(c), and the central part is shown in Fig. 10(d). These
blowups demonstrate that the strong transverse flow due to
surface anisotropy is generated only in the vicinity of the wall
and tends to disappear far from it, as predicted theoretically'”
and observed in experiment.*’ The effective velocity profile is
“twisted” close to the striped wall.
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FIG. 10. The velocity profile across the channel at ® = /4, (a) H = 100, y from —50 to 50, (b) H = 500, y from —250 to 250, (¢) H = 500, y from 150 to
250, enlarged part near the striped-pattern, and (d) H = 500, y from —50¢ to 5o, enlarged part near the channel center. The z components in (c) and (d) have

been increased five times for better demonstration.

VI. CONCLUSION

We have investigated pressure-driven flow in a flat-
parallel channel with two aligned striped SH surfaces. For
this geometry of configuration we propose a semi-analytical
theory, which is valid for an arbitrary gap and any local slip
length at the slipping areas of the stripes. Analytical results
are presented for various important limits, and our approach
gives simple analytical formula for an effective slip length in
case of stripes that are inclined with respect to a pressure gra-
dient. Furthermore, our theory gives analytical guidance as to
how to choose the parameters of the texture and a tilt angle,
in order to optimize the transverse flow in different situations.
Our theoretical predictions have been compared with results
of DPD simulations, which are in a good quantitative agree-
ment with the macroscopic theory. Our results are directly
relevant for passive mixing in thin channels and other mi-
crofluidic applications. In the future, we hope to augment our
analysis to include the possibility of a surface charge patterns,
which would help to understand transverse electro-osmotic
phenomena. Another fruitful direction could be to consider
identical, but misaligned striped walls, where the relative
orientation of surfaces could generate additional mechanism
of mixing.
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