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Tensorial hydrodynamic slip
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We describe a tensorial generalization of the Navier slip boundary condition and
illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial
slip can be derived from molecular or microstructural theories or simply postulated
as a constitutive relation, subject to certain general constraints on the interfacial
mobility. The power of the tensor formalism is to capture complicated effects of
surface anisotropy, while preserving a simple fluid domain. This is demonstrated by
exact solutions for laminar shear flow and pressure-driven flow between parallel plates
of arbitrary and different textures. From such solutions, the effects of rotating a texture
follow from simple matrix algebra. Our results may be useful for extracting local slip
tensors from global measurements, such as the permeability of a textured channel or
the force required to move a patterned surface, in experiments or simulations.

1. Introduction
The emergence of microfluidics has focused renewed attention on hydrodynamic

boundary conditions (Stone, Stroock & Ajdari 2004). Reducing fluid volumes enhances
the impact of surface phenomena (Squires & Quake 2005), so the use of appropriate
boundary conditions is crucial to the design and optimization of lab-on-a-chip
devices. It is now widely recognized that the classical no-slip hypothesis supported
by macroscopic experiments does not always apply at the micro- and, especially, the
nano-scale.

In this context, the phenomenon of liquid slip at solid surfaces has been studied
extensively in experiments, theoretical calculations, and simulations (Vinogradova
1999; Lauga, Brenner & Stone 2007; Bocquet & Barrat 2007). The results are usually
interpreted in terms of the Navier boundary condition,

�u = u − U = b
∂u

∂n
(1.1)

where the fluid velocity u minus the surface velocity U is proportional to the shear
strain rate ∂u/∂n via the slip length b. Flow past smooth hydrophilic surfaces has
been shown to be consistent with the no-slip hypothesis, but b can reach tens of
nanometres for hydrophobic surfaces (Vinogradova & Yakubov 2003; Cottin-Bizonne
et al. 2005; Joly, Ybert & Bocquet 2006). Hydrophobicity can be significantly amplified
by roughness and can reduce friction due to trapped nanobubbles (Vinogradova et al.
1995; Cottin-Bizonne et al. 2003). Extreme hydrophobicity can be generated with
well-controlled textures (Quéré 2005), leading to a many-micron slip lengths (Ou &
Rothstein 2005; Joseph et al. 2006; Choi et al. 2006) and very fast transport of water
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through microchannels. The strong anisotropy of such surfaces, however, can limit
the validity of (1.1).

The possibility of transverse flow over a grooved no-slip surface, perpendicular to
an applied shear stress, has been analysed by Stroock et al. (2002b), Ajdari (2002),
and Wang (2003) and exploited for chaotic mixing in microfluidic devices by Stroock
et al. (2002a). In this context, Stroock et al. (2002b) expressed the permeability κ of
a thin parallel-plate microchannel with one grooved and one flat surface in terms
of an effective slip-length tensor, b= {bij }, defined by a generalized Navier boundary
condition

�u = u − U = b (n̂ · ∇u) (1.2)

and Stone et al. (2004) expressed the velocity profile in terms of b. This elegant
construction relating permeability to slip, however, assumes that the global flow has
the same anisotropy as the grooved surface (i.e. κ and b are coaxial). This is generally
not the case with multiple textured surfaces (Wang 2003), curved walls (Einzel,
Panzer & Liu 1990), obstacles in the flow, etc., and we are not aware of any other
use of the tensorial relation (1.2). Wang (2003) considered flow between misaligned,
grooved plates using (1.2) in component form but deemed the solution ‘too tedious
to reproduce’. We shall see that this problem and others have very simple solutions
in tensorial form.

In this paper, we propose the use of (1.2) as a local boundary condition for any
surface whose texture perturbs fluid flow on length scales much smaller than the
geometry. In § 2 we discuss a general boundary condition relating slip velocity to
normal traction via an interfacial mobility tensor. To illustrate its use, we derive exact
solutions for two types of laminar flow between textured parallel plates (which can
also be superimposed): (i) shear flow due to moving plates in § 3, and (ii) pressure-
driven flow in § 4. We close in § 5 by suggesting further applications.

2. Theory
2.1. The interfacial mobility tensor

Although (1.1) is the most commonly used boundary condition for hydrodynamic slip,
it is not widely known that Navier (1823) also postulated the more general relation

�u = Mτ (2.1)

where τ is the local shear stress (normal traction) and M is a constant interfacial
mobility (velocity per surface stress). For a Newtonian fluid, τ = η∂u/∂n, this reduces
to (1.1) with b = Mη, where η is the viscosity. Molecular dynamics simulations have
shown that (2.1) with constant M is more robust than (1.1) with constant b, since the
fluctuating slip velocity correlates better with the shear stress (normal forces) than
with velocity gradients very close to the surface (Hess & Loose 1989; Bocquet &
Barrat 2007).

A natural generalization of the slip condition (2.1) is

�u = M (n̂ · σ ) (2.2)

where n̂ · σ = f n is the fluid force (normal traction) on the interface, σ is the local
stress tensor, and M is an interfacial mobility tensor. As shown in figure 1, the effective
slip vector is generally misaligned with the force vector for an anisotropic surface.
Equation (1.2) is recovered with b= Mη in the case of a Newtonian fluid of viscosity η.
For anisotropic surfaces, the mobility is a second-rank tensor M = {Mij }, whether the
averaging of surface forces occurs over microstructural or molecular heterogeneity.
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Figure 1. Physical picture of tensorial slip. The normal traction f n exerted by the fluid on an
anisotropic surface produces an effective slip velocity �u = M f n in a different direction. At
the molecular level, the interfacial mobility tensor M can be related to trajectories of diffusing
interfacial particles, such as the one shown.

As with scalar slip (Bocquet & Barrat 2007), the tensorial slip boundary condition
(2.1) can be justified in various ways. At the microstructural level, grooved surfaces
(with or without scalar slip) have effective tensorial slip coefficients, which can be
explicitly calculated for simple geometries, if the grooves vary on much smaller scales
than the fluid domain (Stroock et al. 2002b; Wang 2003). At the molecular level,
nanoscale surface anisotropy has a similar effect, but due to statistical interactions.

A possible starting point for molecular modelling is a tensorial Einstein relation,
D = MkT /S, relating M to the ‘interfacial diffusivity’ per unit area S, by analogy with
the theory of Brownian motion. This yields the statistical formula

Mij =
S

2kT
lim
t→∞

d

dt
Cov(�xi(t), �xj (t)) (2.3)

where �x(t) = x(t) − U t is the fluctuating position of an interfacial fluid molecule, in
a frame moving with the mean surface velocity (figure 1), where the ‘interface’ may
include molecules distinct from the bulk fluid, e.g. in a vapour phase. Observing
thermal diffusion near a surface to infer its slip length was also exploited in
experiments by Joly et al. (2006). The mobility formula (2.3) can be recast in a
tensorial Green–Kubo form,

Mij =
S

kT

∫ ∞

0

dt Cov(vi(0), vj (t)) (2.4)

where v(t) = d�x/dt . These formal expressions assume convergence in the
thermodynamic limit (taken before t → ∞) for molecular trajectories exploring the
interfacial region on scales much larger than the surface heterogeneity. In that case,
via the covariance matrix, M is symmetric, positive definite and thus invertible. As
noted by Bocquet & Barrat (2007), the inverse mobility, or friction tensor F = M−1,
also has a tensorial Green–Kubo representation, as the integral of the auto-correlation
function for forces exerted by the fluid on the surface (Bocquet & Barrat 1994).

2.2. General properties of M

Regardless of its microscopic justification, we suggest adopting (2.2) as a general,
interfacial constitutive relation for continuum mechanics. Like its bulk counterpart
relating the stress and deformation rate, its form can be either derived from
microscopic models or simply postulated and fit to experimental data, subject to
certain constraints discussed below. For a general ‘nonlinear interface’, the mobility
tensor M could depend on the surface forces, as well as internal degrees of freedom,
such as the local orientation of surface molecules or deformable microstructures; for



128 M. Z. Bazant and O. I. Vinogradova

example, hinge-like structures could lead to different slip in opposite directions. For
permeable surfaces with n̂ · �u �= 0, the mobility tensor may be represented by a 3×3
matrix with tangential–normal couplings, a possibility which has not been considered
before to our knowledge.

Here, we will focus on the simplest case of impermeable, macroscopically
homogeneous, linear interfaces, where M is a constant 2 × 2 matrix in a local suitable
coordinate system of the tangent plane. Below we will refer to the mobility tensor
as defining the ‘texture’ of a surface up to a rotation, which sets the ‘orientation’.
The tensor formalism allows us to easily change the orientation of a texture, once
a problem has been solved in terms of mobility tensors for a given geometry. The
mobility simply transforms as

M �→ Sθ M S−θ where Sθ =

(
cos θ sin θ

− sin θ cos θ

)
(2.5)

is a matrix rotating the tangent plane by an angle θ .
We also consider ‘passive’ surfaces, which do not transfer energy to the fluid. In

that case, enforcing a positive rate of work wI on the slipping interface (M �= 0),

wI = f n · �u = f n · M f n > 0, (2.6)

for any loading f n = n̂ · σ implies that M must be positive definite. This argument
is similar to the constraint of positive entropy production at a slipping boundary in
irreversible thermodynamics (Heidenreich, Ilg & Hess 2007). The statistical arguments
above lead to the same conclusion, e.g. since the diffusivity D is positive definite for a
passive surface. The eigenvectors of M correspond to special directions along which
fluid forces do not produce transverse slip, and the (positive) eigenvalues are the
corresponding directional mobilities. Since positive-definite matrices are invertible,
the boundary condition can also be expressed as f n = F�u in terms of the (coaxial)
friction tensor, F= M−1.

Diagonalization allows us to relate M to the position of the slip plane in (2.2),
which is independent of the force f n. In each eigendirection êi , the tensorial boundary
condition (2.2) reduces to the scalar case (2.1), and the eigenvalue Mi depends on
the (arbitrary) choice of slip plane in the usual way (Bocquet & Barrat 2007); for
a Newtonian fluid (1.1), the slip length bi =Miη is the position of the slip plane,
relative to the (unique) depth of no slip extrapolated from a homogeneous bulk
shear flow. By appropriately shifting the eigenvalues {Mi}, the same slip plane can
be chosen for all directions. The mobility tensor is then constructed from the spectral
decomposition, M = SM̂S−1, where M̂ is the diagonal matrix of eigenvalues and S the
matrix of column eigenvectors.

2.3. Symmetric mobility tensors

Although we will make no further assumptions in our analysis below, a constant
mobility tensor is usually symmetric, Mij = Mji , as in the statistical formulae above.
This is also the case for the effective slip tensor derived by averaging linear Stokes
flows over grooved no-slip surfaces (Stroock et al. 2002a; Wang 2003). More generally,
symmetry of M exemplifies the widely used Onsager–Casimir relations of linear
response near thermal equilibrium (Bocquet & Barrat 1994; Ajdari 2002; Heidenreich
et al. 2007).

A 2 × 2 interfacial mobility matrix, which is symmetric and positive definite, has
some useful mathematical properties. There always exists a rotation of the orthogonal
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Figure 2. Sketch of a fluid region |z| < h/2 between upper (+) and lower (−) parallel plates
with arbitrary textures (grooves, surface coatings, bubbles, etc.). The texture length scales are
much less than the gap h, so each surface has a well defined slip-length tensor, b+ and b−, with
eigenvalues b

±
‖ (and b

±
⊥) in the fastest (and slowest) slipping directions indicated. The plates

move at relative velocity U and/or a uniform pressure gradient −∇p is applied. In addition
to the usual no-slip parabolic Poiseuille flow P and linear shear flow S, slip-driven plug-flow
A and shear-flow B are superimposed in different directions.

(x, y) coordinate system of the tangent plane Sθ , which diagonalizes the mobility,

M = Sθ

(
M‖ 0

0 M⊥

)
S−θ =

(
M‖ cos2 θ + M⊥ sin2 θ (M‖ − M⊥) sin θ cos θ

(M‖ − M⊥) sin θ cos θ M‖ sin2 θ + M⊥ cos2 θ

)
,

(2.7)

where M‖ � M⊥ > 0 are the eigenvalues. The decomposition M = M‖ ê‖ êT
‖ + M⊥ ê⊥ êT

⊥
shows that �u is a linear superposition of scalar slip in the eigendirections.

Regardless of the complexity of the texture, as long as (2.2) holds at the geometrical
scale with a symmetric, positive-definite M, there exist orthogonal directions on the
surface, ê‖ = Sθ x̂ and ê⊥ = Sθ ŷ, along which there are no transverse hydrodynamic
couplings, ê⊥ · Mê‖ = 0. The mobility for ‘forward’ slip aligned with forcing in a

particular direction ê = Sφ x̂ is given by ê · Mê = M‖ cos2(θ − φ) + M⊥ sin2(θ − φ) and
is bounded by the eigenvalues, M⊥ � ê · Mê � M‖. The ‘fast’ axis of greatest forward
slip (θ = 0) is always perpendicular to the ‘slow’ axis of least forward slip (θ = π/2).

2.4. Simple examples

In the following sections, we focus on passive linear interfaces and Newtonian fluids,
described by the Navier–Stokes equations

ρ

(
∂u
∂t

+ u · ∇u

)
= −∇p + η∇2u and ∇ · u = 0. (2.8)

In that case, all the properties of M above are inherited by the slip-length tensor,
b = Mη, with eigenvalues, b‖ =M‖η and b⊥ =M⊥η. We also assume impermeable,
macroscopically homogeneous surfaces, for which b is a constant 2 × 2 matrix.

To illustrate the use of slip tensors, we consider the geometry in figure 2 where
the fluid is confined between flat plates at z = ± h/2 moving at velocities U± (§ 3) or
forced by a pressure gradient (§ 4). Each plate has a fine texture (varying on scales 

h) and exhibits uniform tensorial slip,

u = U± ∓ b± ∂u
∂z

for z = ±h

2
, (2.9)
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where the slip-length tensors, b+ and b−, are represented by constant, positive-definite
(but not necessarily symmetric) 2 × 2 matrices in the (x, y) coordinate system.

3. Example: shear flow
3.1. General solution

The simplest solution of (2.8)–(2.9) corresponds to laminar shear flow between two
moving textured plates, shown in figure 2. In terms of the depth-averaged velocity
U = (U+ +U−)/2 and relative plate velocity v = U+ − U−, we can express the solution
as

u = U +

[
As + (Bs + I)

2z

h

]
v

2
(3.1)

where As and Bs are dimensionless 2 × 2 matrices with the following physical
interpretations. The first term in (3.1) describes a slip-driven plug flow in the Asv-
direction, and the second describes a slip-driven linear shear flow in the Bsv-direction.
Substituting (3.1) into (2.9), we find

As = −D(I + C)−1 and Bs = (I + C)−1 − I, (3.2)

where

hC = b+ + b− and hD = b+ − b−. (3.3)

The slip-driven plug flow vanishes (As = 0) only if the textures are the same (D = 0),
and slip-driven shear flow always occurs (Bs �= 0, if b+ �= 0 or b− �= 0).

The solution (3.1)–(3.2) exists for any b±, as long as I + C is invertible; this is
ensured for passive surfaces, since b± and C are positive definite, and possible for
some active surfaces. In the typical case of symmetric b±, the solution can be expressed
in terms of the texture orientation angles θ± and slip-length eigenvalues, b

±
‖ = M

±
‖ η

and b
±
⊥ = M

±
⊥ η using (2.7). This can be easily accomplished in the following general

situations by diagonalizing As and Bs .

3.2. Aligned but different textures

We first consider ‘aligned’ surfaces with the same orientation θ± = θ , but arbitrary
slip-length eigenvalues:

b± = Sθ

(
b

±
‖ 0

0 b
±
⊥

)
S−θ . (3.4)

The coefficient tensors (3.2) are then diagonalized by the same rotation matrix

As = Sθ

(
As(b

+
‖ , b−

‖ ) 0

0 As(b
+
⊥, b−

⊥)

)
S−θ , (3.5)

Bs = Sθ

(
Bs(b

+
‖ , b−

‖ ) 0

0 Bs(b
+
⊥, b−

⊥)

)
S−θ , (3.6)

and the eigenvalues

As(b
+, b−) = − b+ + b−

h + b+ + b− and Bs(b
+, b−) = − b+ − b−

h + b+ + b− (3.7)

result from scalar slip in the eigendirections.
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3.3. Identical but misaligned textures

Next we consider identical textures with arbitrary orientations, θ± = θ̄ ± �θ:

b± = Sθ±

(
b‖ 0

0 b⊥

)
S−θ± . (3.8)

By expressing the sum and difference matrices (3.3) as

hC = 2Sθ̄

(
b‖ cos2 �θ + b⊥ sin2 �θ 0

0 b‖ sin2 �θ + b⊥ cos2 �θ

)
S−θ̄ , (3.9)

hD = Sθ̄

(
0 (b‖ − b⊥) sin 2�θ

(b‖ − b⊥) sin 2�θ 0

)
S−θ̄ , (3.10)

we find As = 0 and

Bs = Sθ̄

⎛
⎜⎜⎜⎝

−
b‖ cos2 �θ + b⊥ sin2 �θ

h/2 + b‖ cos2 �θ + b⊥ sin2 �θ
0

0 −
b‖ sin2 �θ + b⊥ cos2 �θ

h/2 + b‖ sin2 �θ + b⊥ cos2 �θ

⎞
⎟⎟⎟⎠ S−θ̄ .

(3.11)

The slip-driven plug flow vanishes by symmetry, and the slip-driven shear flow
coefficient Bs is diagonalized by Sθ̄ , where θ̄ is the angle that bisects the orientation
angles. As expected by symmetry, if the two textures are the same (but misaligned),
then shearing in this direction cannot produce any transverse flow.

4. Example: pressure-driven flow
4.1. General solution

Another simple solution to (2.8)–(2.9) describes steady, laminar flow in response to an
applied pressure gradient, g = −∇p = gx x̂ + gy ŷ, between stationary textured plates
in figure 2. We express the solution in the form

u =
h2

4η

{
1

2

[
1 −

(
2z

h

)2
]

I + Ap +

(
2z

h

)
Bp

}
g (4.1)

where Ap and Bp are dimensionless 2 × 2 matrices. In spite of surface anisotropy,
the velocity is horizontal ( ẑ · u =0) and varies only in the vertical z-direction, due to
translational invariance. The solution (4.1) is a linear superposition of three terms:
the familiar parabolic profile of Poiseuille flow in the g-direction between parallel
no-slip planes; a slip-driven plug flow in the Ap g-direction; and a linear shear flow in
the Bp g-direction, which arises only if b+ �= b−. Substituting (4.1) into (2.9), we find

Ap = C − D(I + C)−1D and Bp = (I + C)−1D (4.2)

in terms of the sum and difference tensors defined in (3.3).
In the limit of no slip on the upper surface b+ = 0, our solution reduces to that

of Stone et al. (2004). In that case, hC = −hD = b−, the coefficient tensors, Ap and
Bp , and the permeability K are all coaxial with the slip-length tensor b− of the lower
surface. Here, we analyse more general situations where the upper and lower surfaces
have different slip tensors.

For symmetric b±, we can diagonalize Ap and Bp in the same simple situations
considered above for shear flow. In the case of aligned but different slip tensors (3.4),
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the coefficient tensors (4.2) are diagonalized by the same rotation matrix:

Ap = Sθ

(
As(b

+
‖ , b−

‖ ) 0

0 As(b
+
⊥, b−

⊥)

)
S−θ , (4.3)

Bp = Sθ

(
Bs(b

+
‖ , b−

‖ ) 0

0 Bs(b
+
⊥, b−

⊥)

)
S−θ , (4.4)

and the eigenvalues

As(b
+, b−) =

b+ + b− + 4h−1b+b−

h + b+ + b− and Bs(b
+, b−) =

b+ − b−

h + b+ + b− (4.5)

result from scalar slip in the eigendirections. There are several simple cases: (i) if
the surfaces are isotropic, b± = b±I, then Ap = As I and Bp =Bs I; (ii) if the surfaces
have the same slip tensors, b+ = b− = b, then Ap = 2h−1b and Bp = 0; (iii) if the upper
surface has no slip, b+ = 0 and b− = b, then As = −Bs = b/(h + b), or more compactly
Ap = −Bp = b(hI + b)−1, which reduces our solution to that of Stone et al. (2004) for
one textured surface.

For identical but misaligned textures (3.8), we find Ap = C and Bp = 0, using (3.9)
and (3.10). Now the slip-driven shear flow vanishes by symmetry. The slip-driven plug
flow is proportional to the average slip-length tensor and diagonalized by Sθ̄ , where
θ̄ is the angle that bisects the surface orientation angles; a pressure gradient in this
direction cannot produce any transverse flow, if the two textures are the same.

4.2. Permeability

In many situations, one is more interested in the depth-integrated total flow rate
in a given direction than the velocity profile. In linear response, the depth-averaged
velocity u is proportional to the applied pressure gradient,

u =
1

h

∫ h/2

−h/2

u dz = κ g, (4.6)

via the permeability tensor κ . For the anisotropic Poiseuille flow (4.1), this integral is
easily performed to obtain

κ =
h2

12η
K, where K = I + 3Ap (4.7)

is the dimensionless permeability, scaled to its value without slip. The permeability is
generally enhanced by slip-driven plug flow in direction Ap g. (The slip-driven shear
flow does not affect the permeability, although it contributes to mixing.)

The results above for Ap in various special cases can be extended to K, since the
two tensors are coaxial:

K = SθK

(
K‖ 0
0 K⊥

)
S−θK

, (4.8)

where SθK
diagonalizes Ap and K. For aligned but different textures (3.4), the

permeability has the same orientation as the textures, θK = θ , and its eigenvalues,
K‖ = Ks(b

+
‖ , b−

‖ ) and K⊥ =Ks(b
+
⊥, b−

⊥) correspond to cases of scalar slip,

Ks(b
+, b−) =

h + 4(b+ + b−) + 12h−1b+b−

h + b+ + b− . (4.9)
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For identical but misaligned textures (3.8), the permeability is orientated with the
mean angle θK = θ̄ = (θ+ + θ−)/2 with eigenvalues given by

K‖ = 1 +
6

h
(b‖ cos2 �θ + b⊥ sin2 �θ), (4.10)

K⊥ = 1 +
6

h
(b‖ sin2 �θ + b⊥ cos2 �θ), (4.11)

where �θ =(θ+ − θ−)/2. If �θ = π/4, then the permeability is isotropic, K = KI with
K = K‖ = K⊥ =1 + (3/h)(b‖ + b⊥).

Microfluidic devices often contain thin channels of rectangular cross-section with
parallel sidewalls at y = ± L with L � h. In that case, the mean downstream per-
meability of the channel, κ̃x = (h2/12η)K̃x , defined by ux = κ̃xgx , can be easily derived
from the permeability tensor κ defined in (4.6). Ignoring departures from Poiseuille
flow within O(h) of the sidewalls, the constraint of vanishing transverse flow, uy = 0,
is maintained by an induced transverse pressure gradient, gy = −(κyx/κyy)gx , which
drives an additional anisotropic Poiseuille flow. Superimposing these flows, we obtain

K̃x = Kxx − KxyKyx

Kyy

=
det(K)

Kyy

=
K‖K⊥

Kyy

. (4.12)

The channel permeability can also be expressed in terms of an effective downstream
slip length b̃x defined by K̃x = 1 + (6/h)b̃x , although this obscures the true tensorial
nature of the hydrodynamic slip.

5. Conclusion
Our solutions for anisotropic flows between textured plates may be useful in

interpreting experiments and simulations. As in the case of scalar Poiseuille flow,
bulk velocity profiles can be fitted to the theory to systematically extract boundary
effects of slippage and assess the validity of the tensorial slip hypothesis. Our results
also allow the local slip tensors to be determined by global measurements, such
as the permeability of a textured channel or the force required to shear textured
plates, as a function of the surface orientations. In such measurements, departures
from our predictions could be used to isolate nonlinear, inhomogeneous, or non-
symmetric slip response, e.g. due to nanobubble deformation at superhydrophobic
surface (Sbragaglia & Prosperetti 2007), surface curvature (Vinogradova 1995), or
variable channel width (Lauga, Stroock & Stone 2004).

More generally, our calculations illustrate the power of the tensor formalism
in capturing complicated effects of textured surfaces, while preserving simple fluid
domains. The general boundary condition (2.2) may be useful in many other situations,
such as lubrication flows between textured gears, spreading or drainage of thin films,
dispersion and mixing in grooved channels (Stroock et al. 2002a ,b), sedimention of
textured particles (Lecoq et al. 2004), and electrokinetics of patterned surfaces (Ajdari
2002). Transverse spatial couplings could also be added to existing tensorial (but
isotropic) slip boundary conditions for fluids with internal degrees of freedom, such as
liquid crystals and polymer melts; anisotropic surface texture can influence molecular
orientations and thus the effective slip (Heidenreich et al. 2007), which could have
interesting consequences for theory and applications.

The authors gratefully acknowledge the hospitality of ESPCI and support by the
Paris-Sciences Chair (M. Z. B.) and Joliot Chair (O. I. V.).
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Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Mém. l’Acad. R. Sci. lÍnst.
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