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Effective slip-length tensor for a flow over weakly slipping stripes
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We discuss the flow past a flat heterogeneous solid surface decorated by slipping stripes. The spatially varying
slip length, b(y), is assumed to be small compared to the scale of the heterogeneities, L, but finite. For such
weakly slipping surfaces, earlier analyses have predicted that the effective slip length is simply given by the
surface-averaged slip length, which implies that the effective slip-length tensor becomes isotropic. Here we
show that a different scenario is expected if the local slip length has steplike jumps at the edges of slipping
heterogeneities. In this case, the next-to-leading term in an expansion of the effective slip-length tensor in powers
of max [b(y)/L] becomes comparable to the leading-order term, but anisotropic, even at very small b(y)/L.
This leads to an anisotropy of the effective slip and to its significant reduction compared to the surface-averaged
value. The asymptotic formulas are tested by numerical solutions and are in agreement with results of dissipative
particle dynamics simulations.
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I. INTRODUCTION

With emerging technologies in microfluidics [1,2], there
has been renewed interest in quantifying the effects of surface
chemical heterogeneities with local scalar slip [3,4] on fluid
motion. Well-known examples of such heterogeneous systems
include composite superhydrophobic (Cassie) surfaces, where
a gas layer is stabilized by a rough wall texture [5]. These
surfaces are known to be self-cleaning and show low adhesive
forces. In addition, they also exhibit drag reduction for fluid
flow [4,6–8]. This is due to a local slip length at the gas areas,
b � e(μ/μg − 1) � 50e, where μg and μ are dynamic viscosi-
ties of gas and liquid, and e is the thickness of the gas layer [9].
As a result, and in contrast to smooth hydrophobic surfaces,
where b cannot exceed a few tens of nanometers [10–13], slip
lengths of up to tens or even hundreds of micrometers may
be obtained for superhydrophobic textures [14,15]. Therefore,
these surfaces have the potential to influence microfluidics (or
to extend microfluidic systems to nanofluidics), by generating
very fast and well-controlled flows in small devices [7,8,16].

In case of superhydrophobic materials it is convenient
to construct so-called effective slip boundary conditions,
where the complex flow pattern at a heterogeneous surface
is replaced by an effective flow averaged over the length
scale of the experimental configuration [7,17]. In other words,
rather than trying to solve equations of motion on the scale
of the individual corrugation or pattern, one considers the
“macroscale” fluid motion (on the scale larger than the pattern
characteristic length) by using macroscopically equivalent
boundary conditions for an imaginary smooth surface. Such
an effective condition mimics the actual one along the true
heterogeneous surface. It fully characterizes the flow at the
real surface and can be used to solve complex hydrody-
namic problems with much reduced computational effort. The

effective slip approach has been supported by statistical
diffusion arguments [18] and has been justified for the case
of Stokes flow over a broad class of surfaces [17]. Several
numerical approaches have recently confirmed the concept of
effective slip either at the molecular scale, using molecular
dynamics [19,20], or at larger mesoscopic scales using finite-
element methods [21,22] or lattice Boltzmann [23,24] or
dissipative particle dynamics [25] simulations.

For an anisotropic texture, the effective boundary condition
generally depends on the direction of the flow and is a tensor,
beff ≡ {bij

eff}, represented by a symmetric, positive definite 2 ×
2 matrix, which can be diagonalized by a rotation with angle
� (Fig. 1). For all anisotropic surfaces its eigenvalues b

‖
eff and

b⊥
eff correspond to the fastest (greatest forward slip) and slowest

(least forward slip) orthogonal directions [18]. In the general
case of arbitrary direction �, the flow past such surfaces
with anisotropic effective slip becomes misaligned with the
driving force. Therefore, anisotropic textures can potentially
be used to generate transverse hydrodynamic flow [18,26,27],
which is of obvious fundamental and practical interest. For
example, transverse hydrodynamic couplings in flow through
a textured channel can be used to separate and concentrate
suspended particles [28] or for passive chaotic mixing [27,29].
This can also be used to generate anisotropic electrokinetic
flows [30–32].

However, it has been predicted that regardless of the
anisotropy of the surface texture, the effective slip-length
tensor, beff , becomes isotropic (b⊥

eff = b
‖
eff) for a weakly

slipping pattern, i.e., when the local slip length, b(x,y), is
small compared to the characteristic scale of heterogeneities,
L. The value of the effective slip is the surface average of the
local slip length, beff = I 〈b(x,y)〉. In the particular case of
a no-slip plane covered by patterns with constant slip length

023004-11539-3755/2013/88(2)/023004(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.023004


ASMOLOV, ZHOU, SCHMID, AND VINOGRADOVA PHYSICAL REVIEW E 88, 023004 (2013)

Θ

δ

Liquid

Gas

(a)

(b)

e

FIG. 1. Sketch of the striped surface: � = π/2 corresponds to
transverse stripes, � = 0 to longitudinal stripes (a), and of the liquid
interface in the Cassie state (b).

b—the situation considered in most previous publications on
the subject [21,33,34]—one can derive [17,33,35]

b
‖,⊥
eff � bφ, (1)

where φ = δ/L is the surface fraction of the slipping phase.
We remark and stress that b‖,⊥

eff can still remain extremely large
compared to the nanometric scalar slip at flat hydrophobic
solids. Equation (1) implies, among other things, that the flow
aligns with the applied driving force for all in-plane directions.
Thus, it seems impossible to generate transverse hydrody-
namic [7,25] or transverse electro-osmotic [31] phenomena
for weakly slipping anisotropic textures. Another important,
and somewhat remarkable, consequence of Eq. (1) is that the
effective slip is predicted to depend only on the fractions of
slipping areas but not on their detailed structure.

Known derivations of Eq. (1), however, neglect localized
flow perturbations around possible jumps in discrete slip
lengths, from 0 to b, at the border of heterogeneities. Such
jumps could contribute to friction, as has been recently
detected in a molecular dynamics simulation study [20], and
also to the anisotropy of the flow, but we are not aware
of any prior work that has quantified the phenomena. In
this paper we reconsider the problem of flow past weakly
slipping one-dimensional surfaces, focusing on the situation
of superhydrophobic stripes, where the perturbation of b(y)
is piecewise constant; i.e., it jumps in a steplike fashion at
heterogeneity boundaries.

Our paper is arranged as follows: In Sec. II we define the
problem and construct the expansions for the eigenvalues of
the slip-length tensor of alternating weakly slipping stripes.
Here we also analyze a singularity of the velocity gradi-
ent at the edges of stripes. The details of the computer
simulation method (dissipative particle dynamics) related to
weakly slipping surfaces are discussed in Sec. III. Finally,
in Sec. IV, we present simulation and numerical results to
validate the predictions of the asymptotic theory. The practical
implications and limitations of our models are also reviewed

here. In the Appendix we give some simple arguments showing
that standard two-term expansions for effective slip lengths of
one-dimensional textures could not be applied in case of a
discontinuous local slip.

II. THEORY

A. Problem setup

We consider creeping flow along a planar anisotropic
wall and a Cartesian coordinate system (x,y,z) (Fig. 1). The
origin of the coordinates is placed at the flat interface, and a
one-dimensional texture varies over a period L. Our analysis
is based on the limit of a thick channel or a single interface,
so that the velocity profile sufficiently far above the surface
may be considered as a linear shear flow. Dimensionless
variables are defined in terms of the reference length scale
L, the asymptotic shear rate far above the surface, G, and the
fluid kinematic viscosity ν.

For a one-dimensional texture there exists a simple relation
between longitudinal and transverse effective slip lengths [36]:

b⊥
eff[b(y)] = b

‖
eff[2b(y)]

2
, (2)

which has recently been verified for cosine variation in local
slip length by using lattice Boltzmann simulations [24]. There-
fore, it is sufficient to consider the longitudinal configuration.
Since, in this case, the velocity has only one component, we
seek a solution for the velocity profile of the form

v = U + u,

where U = z is the undisturbed linear shear flow. The
perturbation of the flow u(y,z), which is caused by the
presence of the texture and decays far from the surface at small
Reynolds number Re = GL2/ν, satisfies the dimensionless
Laplace equation,

�u = 0. (3)

The boundary conditions at the wall and at infinity are defined
as

z = 0 : u − εβ(y)∂zu = εβ(y), (4)

z → ∞ : ∂zu = 0, (5)

where ε = max [b(y)]/L and β = b(y)/max [b(y)] is the
normalized slip length.

The solution of Eqs. (3)–(5) for a weakly slipping
anisotropic texture, ε 
 1, can be constructed as an expansion
in powers of ε:

u =
∞∑

k=1

εkϕk. (6)

The boundary conditions to ϕk can be readily obtained by
substituting Eq. (6) into Eq. (4) and by collecting the terms of
the order of εk [17]:

z = 0 : ϕ1 = β(y),

z = 0, k > 1 : ϕk = β(y)∂zϕk−1. (7)

The leading-order solution yields an area-averaged isotropic
slip length [33,35]. In practice, this means that the slip-length
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tensor becomes isotropic and that, for all in-plane directions,
the flow aligns with the applied force.

It is important to note however that Eqs. (6) and (7)
are inapplicable for a discontinuous β(y) (see the Appendix
for details). From a physical point of view, the problem is
associated with singularities of the velocity gradient at the
boundaries of the slip region. As a specific example, let
us consider a classical case of alternating weakly slipping
(ε = b/L 
 1) stripes with

β(y) =
{

1 as |y| � φ/2,

0 as φ/2 < |y| � 1/2,
(8)

so that the boundary conditions, Eq. (4), can be rewritten as

z = 0, |y| � φ/2 : u − ε∂zu = ε,

z = 0, φ/2 < |y| < 1/2 : u = 0. (9)

The velocity gradient grows infinitely near the edge of the
slip region (see Sec. II C for a detailed analysis). As a result,
the corresponding term in Eq. (9), ε∂zu, has the same order
of magnitude as u in the vicinity of the slipping boundary.
Therefore, it cannot be neglected compared to the leading
order, even though ε is small.

B. Slip-length tensor

We now consider the case of stripes more specifically. We
first compute the eigenvalues of the effective slip-length tensor.
Since we assume only weak local slippage, we evaluate the
effective slip length in the principal directions to second order
in ε and seek a solution which is finite, i.e., has no singularity.

A general solution satisfying the Laplace equation (3) and
decaying at infinity can be presented in terms of a cosine
Fourier series as [36]

u = a0

2
+

∞∑
n=1

an exp(−2πnz) cos(2πny), (10)

where an are constant coefficients to be found from (9). The
Navier slip boundary condition (4) can be written in terms of
the Fourier coefficients an, accounting for (10), as

a0

2
+

∞∑
n=1

[1 + 2πnεβ(y)]an cos(2πny) = εβ(y). (11)

We construct the asymptotic series for alternating stripes,

u =
∞∑

k=1

uk =
∞∑

k=1

[
a0

k

2
+

∞∑
n=1

an
k exp(−2πnz) cos(2πny)

]
,

imposing that |uk+1/uk| 
 1 over the entire flow region. The
boundary conditions for uk at the wall can be chosen as
follows:

z = 0 : uk − ε∂zuk = rk(y), (12)

r1(y) =
{

ε as |y| � φ/2,

0 as φ/2 < |y| � 1/2,
(13)

k > 1 : rk(y) =
{

0 as |y| � φ/2,

−ε∂zuk−1 as φ/2 < |y| � 1/2.
(14)

The reader may check by the summation of Eqs. (12) over k

that they are fully equivalent to Eq. (9).
The slip velocity is the average velocity over the

period:

uslip =
∞∑

k=1

a0
k /2.

The boundary condition (12) can be rewritten in view of (11)
as

a0
k

2
+

∞∑
n=1

an
k (1 + 2πεn) cos(2πny) = rk(y).

The coefficients an
k are now determined using the inverse

Fourier transform:

a0
k = 2

∫ 1/2

−1/2
rk(y)dy,

(15)

n > 0 : an
k = 2

1 + 2πεn

∫ 1/2

−1/2
rk(y) cos(2πny)dy.

From Eqs. (13) and (15), we have to leading order in ε

a0
1 = 2εφ, n > 0 : an

1 = 2ε sin(πnφ)

πn(1 + 2πεn)
.

To find the second-order terms we must evaluate r2 = ∂zu1,
which gives

∂zu1 = −
∞∑

n=1

an
1 2πn cos(2πny)

= −4ε

∞∑
n=1

sin(πnφ) cos(2πny)

1 + 2πεn
. (16)

The second-order slip velocity is then

a0
2 = − 4

∫ 1/2

φ/2
ε∂zu1dy = − 4ε2

π

∞∑
n = 1

1 − cos(2πnφ)

n(1 + 2πεn)
(17)

= 4ε2

π

{
ln(2πε) − γ − 1

2
ln[4 sin2(πφ)]

}
+ O(ε3), (18)

where γ = 0.5772157 . . . is Euler’s constant. The series in
Eq. (17) are very similar to those expected for a discontinuous
b(y) [see Eq. (A6) of the Appendix]. They differ only by
the factor (1 + 2πεn) in the denominator of the first sum.
This factor is small at n = 1, but it grows linearly with n at
large n, thus ensuring convergence of the series. Note that
the first logarithmic term in (18) does not depend on the
fraction of the slip regions, φ. This term is associated with
the flow singularities near the boundaries between no-slip and
slip regions (see Sec. II C), which are responsible for additional
viscous dissipation that reduces beff .

Finally, for the longitudinal effective slip we obtain the
following expansion:

b
‖
eff/L= εφ +2ε2

π

{
ln

[
πε

sin(πφ)

]
−γ

}
+O(ε3 lnε), (19)

from which we can derive the transverse effective slip using
(2),

b⊥
eff/L= εφ+4ε2

π

{
ln

[
2πε

sin(πφ)

]
−γ

}
+O(ε3 ln ε). (20)
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To summarize, we have here directly demonstrated that Eq.
(1) must be applied with care. On the one hand, Eqs. (19) and
(20) unambiguously show that Eq. (1) does indeed give the
correct first-order term of an expansion for the eigenvalues of
the slip-length tensor, even in a case of alternating stripes.
On the other hand, the higher-order contributions may be
nonanalytical in ε, which may create complications. In case
of a local slip which exhibits steplike jumps at the edge
of heterogeneities, the second-order terms of the expansions
become of the order of ε2 ln ε (in contrast to ε2, which would
be expected for continuously varying local slip). Therefore,
they can be comparable to the first-order terms and cannot be
ignored even at relatively small ε (see Sec. IV). These terms
are responsible not only for anisotropy of the flow but also
(being negative) for an additional dissipation.

C. Edge singularity

We now describe the flow singularities near slipping
heterogeneities in more detail. For the flow over a surface with
rectangular grooves, the shear stress is found to be singular
near sharp corners, i.e., proportional to r−1/3 for longitudinal
and to r−0.455 for transverse configurations [37]. Here r is the
distance from the corner. Following this approach, we now
consider the flow in the vicinity of the edge of our weakly
slipping regions, by using polar coordinates (r,θ ) with the
origin at (y,z) = (φ/2,0). The no-slip and slip regions then
correspond to θ = 0 and θ = π . The solution of the Laplace
equation (3) that satisfies the no-slip boundary condition at
θ = 0 is

u = crλ sin(λθ ). (21)

The velocity at the edge is finite provided λ > 0. The
components of velocity gradient are

∂zu = cλrλ−1 cos[θ (1 − λ)],
(22)

∂yu = −cλrλ−1 sin[θ (1 − λ)].

The velocity decays faster than its gradient as r → 0 : rλ versus
rλ−1. Hence, in a small region r ∼ ε, the dimensionless shear
rate ε∂zu is of the same order as u, and it cannot be ignored
in the boundary condition (9) even though ε 
 1. Moreover,
at smaller distances, r 
 ε, the term ε∂zu dominates over u,
and the condition in this region becomes shear-free:

r 
 ε, θ = π : ∂zu = 0. (23)

The last condition enables us to find λ. To satisfy Eq. (23)
one should require, in view of (22), λ = 1/2. Therefore, the
velocity over the slip region is

r 
 ε, θ = π : u = cr1/2, ∂yu = −cr−1/2/2, (24)

where c is a constant. The velocity gradient over the no-slip
region follows from (22):

r 
 ε, θ = 0 : ∂zu = cr−1/2/2. (25)

In other words, the shear stress has a singularity at the edge.
We remark that Eqs. (24) and (25) are valid in a small

region, r 
 ε, near a jump in the discrete local slip length,
from 0 to a finite b. Therefore, our asymptotic theory is only
valid provided that the fractions of the slip and no-slip regions
are not too small: φ � ε, 1 − φ � ε. Otherwise, the two edges

of heterogeneities are close to each other, so that the singular
regions overlap. Note that a similar, r−1/2, dependence of
the velocity has been obtained earlier for a no-slip surface
decorated with perfect-slip stripes [36,38,39]. A striking
conclusion from our analysis is that such a singularity appears
even at a very small slip at the gas area.

For the transverse flow one can use the relation between the
velocity fields for the two orientations [36]:

v = 1

2

(
ud + z

∂ud

∂z

)
, w = − z

2

∂ud

∂y
, (26)

p = −∂ud

∂y
, (27)

where ud (y,z) = u[y,z,2εβ(y)] is the velocity field for the
longitudinal pattern with double local slip length [cf. Eq. (2)].
Hence we conclude that at the wall

z = 0 : v = 1

2
ud,

∂v

∂z
= ∂ud

∂z
. (28)

From Eqs. (24)–(27), it also follows that ∂v
∂z

, ∂w
∂z

, and p all
have the same singularity r−1/2 at the edge of the weakly
slipping region.

III. SIMULATION METHOD

We apply the dissipative particle dynamics (DPD) method
[40–42] to simulate the flow near striped superhydrophobic
surfaces. The DPD method is an established coarse-grained,
momentum-conserving method for mesoscale fluid simula-
tions, which naturally includes thermal fluctuations. More
specifically, we use a DPD version without conservative
interactions [43]. The hydrodynamic boundary conditions
are implemented using the tunable-slip method [44], which
models the fluid-surface interaction using an effective friction
force, combined with an appropriate thermostat.

The error of the simulation data is obtained from averaging
over six independent runs. The absolute error in the effective
slip length is typically around 0.2 σ , where σ is the length unit
in the simulation [45]. For weakly slipping surfaces, the ratio
between the effective slip length and the stripe spacing is of the
order of beff/L ∼ 0.1. One can then improve the accuracy by
choosing a large L. On the other hand, the size of the simulation
box is proportional to L2, and the time for the system to reach
a steady state also increases for a large system. Therefore,
the choice of the stripe spacing is a compromise between the
computational accuracy and time. In this study, we have used a
stripe spacing of L = 100σ and a simulation box of size 20σ ×
100σ × 102σ . With a density of 3.0 σ−3, a typical system
consists of 6 × 105 particles. The simulations are carried out
using the open source simulation package ESPResSo [46].

Based on the values of the velocities close to the surface,
we can estimate the characteristic Reynolds number of
our system to be of O(10), which is larger than in real
microfluidic devices. Thus, inertia effects may become
important in simulations, and the Stokes equation is not
strictly valid. This leads to a slight reduction of our simulation
results for the effective slip-length transverse stripes as we
discuss below. To reach more realistic Reynolds numbers, we
would need to reduce the shear rate by orders of magnitude.
This would reduce the average flow velocity significantly, and
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the necessary simulation time to gather data with sufficiently
good statistics will then increase prohibitively.

IV. RESULTS AND DISCUSSION

In this section, we compare predictions of our asymptotic
theory with results of DPD simulations and direct numerical
solutions of Eqs. (3)–(5). To find an numerically we truncate
the sum in (11) at some cutoff number N (usually N =
501) and evaluate it for the points yl = l/2(N − 1), where
l are numbers varying from 0 to N − 1. Then Eq. (11) is
reduced to a linear system Al

na
n = εβl, where Al

n = [1 +
2πnεβ(yl)] cos(2πnyl) and βl = β(yl). The system is solved
using the IMSL routine LSARG.

Figures 2(a) and 2(b) show the exact numerical results
and DPD simulation data for the longitudinal component of
the slip-length tensor as a function of the dimensionless slip
length b/L and the slipping area φ. The simulation data are
in excellent agreement with the numerical results, confirming
the validity of our DPD scheme. Similar calculations were
made for the transverse component of the slip-length tensor.
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FIG. 2. The longitudinal effective slip length as functions of (a)
the local slip for the texture with φ = 0.3 and (b) the fraction of the
slipping phase at b/L = 0.034. Symbols are simulation data. Dash-
dotted curves show exact numerical results, solid lines correspond to
the two-term logarithmic expansions [Eq. (19)], dashed lines to the
linear theory [Eq. (1)], and dotted lines correspond to Eq. (29).

All curves were found to be very similar to those presented
in Fig. 2; therefore, we do not show them here. The values
for the transverse component are smaller than those for the
longitudinal component, indicating that the flow is anisotropic.
The simulation data in the transverse case tend to be slightly
smaller than the prediction from the numerical solution. This
has been observed previously [25] and can be related to the
relatively large Reynolds numbers in our system (see Sec.
III). Inertia effects influence the flow past transverse stripes,
as will be discussed below in the context of Fig. 4. For flow
past longitudinal stripes, u = (u(y,z),0,0), the inertia effects
are negligible, since convective terms in the Navier-Stokes
equations, (u · ∇)u, are zero. Thus the DPD data shown in
Fig. 2 are not affected by Reynolds number.

The surface-averaged slip, predicted by Eq. (1), is also
shown in Fig. 2 and is well above the exact values of the
longitudinal effective slip. Also included in Fig. 2 are the
predictions of our theoretical result, Eq. (19). One can see that
Eq. (19) indeed gives the correct asymptotic behavior in the
limit of very small b/L. It slightly overestimates the value of
the longitudinal effective slip at larger b/L. We remark and
stress that, nevertheless, our second-order calculation is much
more accurate than Eq. (1).

Recently, the authors of Ref. [35] suggested approximate
expressions for effective slip lengths of a surface decorated by
partial slip stripes:

b
‖
eff � L

π

ln
[

sec
(

πφ

2

)]
1 + L

πb
ln

[
sec

(
πφ

2

) + tan
(

πφ

2

)] , (29)

b⊥
eff � L

2π

ln
[

sec
(

πφ

2

)]
1 + L

2πb
ln

[
sec

(
πφ

2

) + tan
(

πφ

2

)] . (30)

These formulas have been verified [35] using the method
developed in Ref. [22]. The agreement between the theoretical
and numerical data was found to be very good for all φ and
b/L, but at b/L = O(1), small discrepancies were observed,
suggesting that Eqs. (29) and (30) slightly underestimate the
effective slip length. To examine this more closely, we also
include the prediction of Eq. (29) in Fig. 2. We find indeed a
small discrepancy between the exact numerical data and the
predictions of Eq. (29), which gives smaller values for the slip
length. The same trends were observed in a wide range of
φ, and the discrepancy slightly increases with the fraction of
slipping phase. Still, the analytical expressions for the effective
slip given in [35] appear to be surprisingly accurate, given their
simplicity. We stress, however, that they do not reproduce the
asymptotic result, Eq. (1), in the limit of very small b/L. They
do correctly predict a linear dependence on b in the limit of
weakly slipping stripes,

b
‖
eff = b⊥

eff � f (φ) b, (31)

but the prefactor, f (φ), differs from φ:

f (φ) � ln
[

sec
(

πφ

2

)]
ln

[
sec

(
πφ

2

) + tan
(

πφ

2

)] < φ. (32)

This prefactor corresponds to the slope of the curve b
‖
eff(b) at

b/L = 0. In Fig. 2(a), the slope of the dotted line correspond-
ing to Eq. (29) is smaller than the exact one. Nevertheless, the
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values of b
‖
eff and b⊥

eff given by (29) and (30) correlate well
with the numerical data for all φ and small but finite b/L.

In summary, weakly slipping stripes generate anisotropic
effective slippage compared to simple, smooth channels, an
ideal situation for various potential applications. To illustrate
this, we now show that our results may be used to easily
quantify transverse phenomena (important for a passive
microfluidic mixing) and a reduction of the hydrodynamic
drag force.

We begin by discussing a transverse flow, or flow
anisotropy, which in a thick channel has been predicted to
be controlled by the difference between the eigenvalues of
the effective slip tensor, b

‖
eff − b⊥

eff , which in turn depends
on φ and b [7]. According to Eq. (1), this difference should
vanish for weakly slipping surfaces. The effect of anisotropy is
highlighted in Figs. 3(a) and 3(b), which show the difference
between the longitudinal and transverse effective slip lengths
computed for fixed φ = 0.3 and b/L = 0.034, respectively.
The exact numerical values are positive, except in the case
of extremely small local slip, clearly showing that the flow is
anisotropic. This is confirmed by the simulation results. The
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FIG. 3. The difference between longitudinal and transverse ef-
fective slip lengths as functions of (a) the local slip for textures
with φ = 0.3 and (b) φ for textures with b/L = 0.034. Solid curves
correspond to calculations made with the two-term logarithmic
expansions [Eq. (33)]. Dotted curves are obtained using Eqs. (29)
and (30). Other notations are the same as in Fig. 2.

error bars are relatively large. For weakly slipping surfaces,
the difference b

‖
eff − b⊥

eff is small compared to the slip lengths
themselves (of the order of ε2 ln ε), and this is the reason for the
large error of the simulation data. The simulation data agree
with the numerical results within the error. Nevertheless, the
data suggest that they lie systematically above the numerical
results especially for larger slipping phase fraction φ. This
is a consequence of the relatively large Reynolds number.
As discussed above, inertia effects primarily affect the flow
and effective slip length in the transverse configuration. Test
runs with larger shear rates were performed, and the deviations
increased, indicating that they presumably vanish in the Stokes
limit. Note that there has been recent (finite-element method)
work in which the decrease of superhydrophobic slip at large
Reynolds numbers has been observed [47], which is consistent
with our results.

Now, we remark that further insight can be obtained from
the above asymptotic results, Eqs. (19) and (20), to predict the
dependence b

‖
eff − b⊥

eff on parameters of the texture:

b
‖
eff − b⊥

eff

L
� − 2b2

πL2

{
ln

[
4πb

L sin(πφ)

]
− γ

}
. (33)

These values are also included in Fig. 3. Equation (33),
which can easily be handled, demonstrates the power of the
asymptotic approach in deriving a relevant expression for the
difference in eigenvalues of the slip-length tensor. In the limit
of small b/L, the asymptotic expansion predicts correctly
the positive difference and enhanced anisotropy as the slip
length increases. At larger b/L, deviations from the numerical
results become larger due to the increasing contribution from
higher-order terms. At b/L = 0.034, the two-term prediction
for the slip length difference is only in moderately good
agreement with the numerical data. For very low or very high
coverage (φ → 0 or φ → 1), the agreement is not good at
all; the theory even predicts the wrong sign [not shown in
Fig. 3(b)]. This is consistent with our discussion in Sec. II C,
where we have argued that the approximation must break
down when the singular regions associated with adjacent
edges overlap. Also included in Fig. 3 is the result from
the approximate expressions Eqs. (29) and (30), which again
shows surprisingly good agreement with the numerical data
over the whole range of φ.

Our theory also allows one to quantify the drag force acting
on a hydrophilic sphere approaching weakly slipping stripes.
It has been shown that such a geometry of configuration is
equivalent to a sphere approaching the imaginary smooth
homogeneous isotropic surface shifted a distance s equal to
the average of the eigenvalues of the effective slip-length
tensor [48]:

s � b
‖
eff + b⊥

eff

2
. (34)

The correction to a drag force due to superhydrophobic slip is
then f ∗ � 1 − s/h [48,49]. By using Eqs. (19) and (20) we
could now easily relate s to texture parameters by a simple
analytical formula

s

b
� φ + b

πL

[
ln

(
4π3b3

L3 sin3(πφ)

)
− 3γ

]
. (35)
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Equation (35) can be also used in case of a plane decorated
with shallow hydrophilic grooves, i.e., when the height of
the texture, e, which should be used instead of b then, is
much smaller than L. This expression explains qualitatively
recent experimental observations, where s/e was found to be
much smaller than φ [50]. Unfortunately, detailed quantita-
tive comparison between the experimental results [50] and
our asymptotic predictions are impossible since the height
of asperities in these experiments was not small enough
(0.168 � e/L � 0.45).

Finally, we consider the velocity at the wall near the edge of
a heterogeneity. Figure 4(a) presents the longitudinal velocity
at the wall for various b/L. In the simulations, the slip velocity
has been obtained from an extrapolation procedure. Due to
the small magnitude of the slip velocity in comparison to the
thermal fluctuation (order of 1 for kBT = 1ε), the data scatter
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FIG. 4. (a) The longitudinal velocity along the wall for a texture
with φ = 0.7 and different slip lengths: b/L = 0.145 (circles and
solid line), b/L = 0.071 (squares and dashed line), and b/L = 0.047
(triangles and dash-dotted line). Symbols are simulation data and
lines are numerical results. (b) Comparison of the transverse velocity
(v[y,z = 0,β(y)]) and longitudinal velocity for nearly double local
slip length ( 1

2 ud [y,z = 0,2β(y)]; see Eq. (28)). The simulation and
numerical results for longitudinal stripes of b/L = 0.147 are shown
by circles and solid lines, respectively. Squares and dashed lines
correspond to transverse stripes of b/L = 0.071.

very much. Much longer averaging times would be necessary
to improve the statistics. The agreement of the exact numerical
results and DPD simulation data is again very good. The
velocity distribution is not smooth at the edge; instead, it rises
according to a power law on the slipping area with exponent
close to λ = 0.5, as predicted in Sec. II C. In Fig. 4(b), we
verify the relation between the transverse and longitudinal
velocities. Equation (28) suggests that the local slip velocity
above transverse stripes of slip length b should be identical
to half of that above longitudinal stripes of slip length 2b.
This is confirmed by the numerical results. The simulation
data, however, show deviations near the edge. This illustrates
the origin of the finite Reynolds number effects discussed
above. In simulations, the fluid is modeled as DPD particles
with finite mass, and abrupt changes of the transverse velocity
are suppressed because of inertia. Therefore the transverse
velocity is smoothed out near the edge, showing a smaller
value compared to the numerical data.

V. CONCLUDING REMARKS

In conclusion, we have investigated shear flow past weakly
slipping superhydrophobic stripes, focusing in particular on
edge effects associated with steplike discontinuities in the
local slip length. The essential conclusion from our analysis
is that such step effects reduce the effective slip below the
surface-averaged value and induce anisotropy. In practice, this
means that the flow does not align with the applied shear
stress. Thus, it should be possible to generate transverse
hydrodynamic phenomena (like in [1,7]) even with such
weakly slipping anisotropic textures. This may also have
relevance for transverse electrokinetic phenomena [7,30–32].
As a side remark, our analytical result opens the possibility
of solving analytically many fundamental problems involving
weakly slipping heterogeneous surfaces, including hydrody-
namic interactions.

Finally, we note that even though our discussion has been
limited to weakly slipping heterogeneities, our model is much
more general. Every result in this work could be used for
describing weakly rough or porous surfaces since, at large
distances from the wall, the boundary condition at the rough
interface or fluid-porous interface may be approximated by a
slip model [49,51–55]. In particular, our results allow one to
interpret recent experiments with hydrophilic grooves, where
even at small e/L the model of “average height” significantly
overestimated measured data [50].
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APPENDIX: DIVERGENCE OF THE EXPANSION (6) FOR A
DISCONTINUOUS LOCAL SLIP LENGTH

We consider periodic textures with β(y) being an even
function, so that the slip length can be expanded as a cosine
Fourier series:

β = β̃0

2
+

∞∑
n=1

β̃n cos(2πny), (A1)

β̃n = 2
∫ 1/2

−1/2
β(y) cos(2πny)dy. (A2)

The expansions of the effective slip lengths up to second order
in ε are then given by [17]

b
||
eff/L = ε

β̃0

2
− ε2π

∞∑
n=1

n|β̃n|2, (A3)

b⊥
eff/L = ε

β̃0

2
− ε22π

∞∑
n=1

n|β̃n|2. (A4)

The first-order terms are the isotropic part of the effective
slip, Eq. (1), since β̃0 = 2 〈β(y)〉. The second-order terms,
which can be neglected for weakly slipping patterns, are
expected to introduce the influence of the surface structure
and are responsible for the anisotropy of the flow.

The expansion (6) implicitly assumes that the infi-
nite sums over n in the higher-order expansion coeffi-
cients converge, which implies that the Fourier series,
Eq. (A1), can be differentiated infinitely often with respect
to y. In cases of discontinuous slip, where β(y) exhibits
jumps, this is no longer correct and the argument breaks
down.

The Fourier coefficients for the striped texture follow from
Eq. (A2):

β̃0 = 2φ,
(A5)

n > 0 : β̃n = 2 sin(πnφ)

πn
.

This implies that the series in Eqs. (A3) and (A4),

∞∑
n=1

n|β̃n|2 = 2

π2

∞∑
n=1

1 − cos(2πnφ)

n
, (A6)

diverge, since their terms decay as n−1 at n → ∞ (with large
n corresponding to small length scales). The slow decay of
|β̃n|2 with n and the divergence of the series indicate that the
expansion (6) does not resolve properly the solution at small
length scales.
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