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Abstract 

       The Electric Double Layer (EDL) has been studied for over a century.  The mean-

field model of EDL in terms of the nonlinear Poisson-Boltzmann equation is well-

established study instrument in a broad range of scientific research areas: 

electrochemistry, colloid chemistry, biophysics, etc. This equation describes the 

equilibrium distribution in space of the electrostatic potential and ionic 

concentrations in the  system. In spite of the respectable age of analyzing EDL in 

terms of the Poisson-Boltzmann equation, there still remain numerous unresolved 

questions related to this approach. Thus, traditionally, the Poisson-Boltzmann 

equation has been analyzed for open systems. Typically, such a system consists of a 

charged surface with the ions dissociated from it and the ions of an electrolyte 

added to the system at a specified finite concentration. For a macroscopic system, 

this usually implies that the ions of the added electrolyte constitute an 

overwhelming majority compared to those dissociated from the interface. As 

opposed, to this approach, in this study we study, both analytically and numerically, 

a closed system, with the total mass of added salt as the control parameter. Our 

analysis particularly focuses on the case when the amount of ions of the added 

electrolyte is comparable to that of ions dissociated from the interface. We show 

that, in this case, a novel, previously undetected boundary layer forms near the 

interface as a fine sub-structure of the common EDL. 
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INTRODUCTION:  ELECTRIC  DOUBLE  LAYER 

     The effect of any charged surface in an electrolyte solution will be to influence the 

distribution of ions in the solution.  Ions of opposite charge (counterions), while in 

thermal motion, are attracted toward the surface while ions of like charge (coions) 

are repelled  from it  (Fig 1.). This leads to the formation of a charged ionic cloud 

near the interface. The total charge of the interface balances that of the cloud. Both 

together form the diffuse electric double layer (EDL). The EDL plays a key role in 

understanding the behavior of many physical, chemical and biological phenomena. 

The concept of the electric double layer was introduced by Helmholtz, who 

suggested  a model  of charges in two parallel planes as shown in Figure 1 (a),   

 

forming  a molecular condenser. However, thermal motion tend to drive the 

counterions away from the surface, forming a diffuse double layer, as shown in 

Figure 1: The electric double layer. (a) according to the Helmholtz model, (b) according to the 
Gouy and Chapman model. 
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Figure 1 (b). The theory for such a diffuse double layer was developed 

independently by Gouy and Chapman [1][2]. 

      The two major applications of the EDL theories are the theory of stability of 

lyophobic colloids (DLVO theory [5], [6] and the theory of electrokinetic phenomena 

[12]- [14]. In the former, the electric field of EDL is used to evaluate the force of 

repulsion between two similarly charge colloidal particles. In the latter, the 

electrical space charge of EDL determines the slip-like flow effects in the 

surrounding fluid, [8], [9]. The two prototypical effects of this type are 

electroosmosis and electrophoresis, [10]-[18]. The former relates to the slip-like 

flow of the fluid induce by a tangential electric field applied to a charged solid liquid 

interface. The latter, a sort of adjoin-reciprocal phenomenon for the former, pertains 

to the motion of a charged macroscopic particle in an electrolyte solution under the 

action of an applied electric field. 

       The central issue in the EDL theories is the evaluation of the electrostatic 

potential. For many years the Poisson-Boltzmann (PB) theory has been used for this  

purpose. As a mean-field theory, the PB theory is based on the following 

assumptions  

1) the only interaction to be considered is the Columbic interaction between 

charged particles, and mean electric field in the system that is each charged 

particles sense, only the mean electric field, rather than that produced by 

instantaneous positions of all other particles, 

2) the  dipole-dipole interactions are neglected,  

3)  the charges are taken as point-like objects neglecting any finite size effect, 

4) the electrolyte solution is  a continuous media with a dielectric constant,  
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5) the electrostatic potential 𝜑(𝑥, 𝑦, 𝑧) is a continuous function . The charge density 

profile of all ions 𝜌(𝑥, 𝑦, 𝑧) is also a mean-field continuous function of the 

position. 

      The  electrostatic potential, is described by Poisson’s equation 

−𝜀𝑟𝜀0∆̃ 𝜑̃ = 𝜌 = ∑ 𝑧𝑖𝐹𝐶𝑖̃.

𝑖

                                                   (1.1) 

Here 𝐹 is the Faraday’s constant (𝐹 = 𝑒𝑁𝐴 = 9.6 × 104 𝐶 × 𝑚𝑜𝑙−1), 𝐶𝑖̃(𝑚𝑜𝑙 × 𝑚−3) 

the concentration, 𝜀𝑟  is the relative permittivity,  𝜀0 = 8.85 × 10−12𝐶 × 𝑉−1 × 𝑚−1 is 

the permitittivity of  a vacuum, 𝑧𝑖 are the valences. It is assumed that the ions are in 

in quasithermal equilibrium with a Bolltzmann distribution 

𝐶̃𝑖 = 𝐶̃𝑖
0

exp (−
𝑧𝑖𝐹𝜑̃

𝑅𝑇
) .                                                   (1.2) 

Here 𝑅 is the universal gas constant(𝑅 = 8.31 𝑉 × 𝐶/𝑚𝑜𝑙 × 𝐾), and  𝐶̃𝑖
0

 is the 

reference concentration of 𝑖 − 𝑡ℎ species (𝑖 =  ±) taken at zero potential, 𝜑̃ → 0.  

Substituting Eq. (1.1) into Eq. (1.2), we get the Poisson-Boltzmann (PB) equation for 

the electric potential 𝜑̃: 

−𝜀𝑟𝜀0∆̃ 𝜑̃ = ∑ 𝑧𝑖𝐹𝐶̃𝑖
0

exp (−
𝑧𝑖𝐹𝜑̃

𝑅𝑇
) .

𝑖

                                 (1.3) 

In the mean field approximation, the mean electrostatic potential, is determined   by 

the Poisson  equation, valid for point like ions as long as they  are in quasi-thermal 

equilibrium with their concentration obeying, the  Boltzmann distribution with the 

mean electric potential in it . The equation is non-linear,  thus it has closed-form 

analytical solutions only for some particular simple settings, such as the case of a 

symmetric binary 𝑧: 𝑧 electrolyte in a one-dimensional  geometry. 
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        In this case (𝑧: 𝑧, 𝑧 = 1) the solution describes the most common situation 

where diffuse charge is distributed in a thin “double layer” near a solid surface. The 

thickness of the diffuse layer is the Debye length,  

𝑟𝐷 = √
𝜀𝑟𝜀0𝑅𝑇

 𝐹2𝐶̃0

                                                   (1.4) 

The Neumann boundary condition, relates to the case of fixed surface charge 

density, and the Dirichlet boundary condition to the case of fixed potential at the 

surface. 

       The PB equation is a useful basis for analytical approximation, whereas its  

numerical solution for specific models and limits provides the ionic profiles 

necessary for applications. 

        The classical Poisson-Boltzmann equation for the equilibrium EDL has been 

solved for solution, that contains anions and cations of the salt added to the solution,  

and the profiles of the electric potential and ionic concentration have been found in 

Ref. [3], for some typical situations characterized either by a total absence of added 

electrolyte or by an exceeding excess of the number of added electrolyte ions 

compared to those dissociated from the charged interface. Fig. 1 illustrates the 

profiles of electric potential and concentrations of ions near charged surface. 

 The review article [4] includes detailed solution of the same problem in the case of 

single sided and double sided charged surface. In all the above studies the Debye 

length is characterized by reference concentration 𝐶̃0.  Our goal in this study is to 

describe EDL width in terms of total mass of added salt. In particular, we wish to 

analyze the case when the number of both types of ions, added and dissociated, is 
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comparable.  A clear understanding of this transitional situation will deepen our 

insight into the basic nature of diffuse electric double layer.  

        Our study is structured as follows. Section 2 outlines the formulation of the 

problem. Sections 3 and 4 provide the analytical solutions for two limiting cases:  no 

added salt and sufficiently high total mass of added salt compared to that of 

dissociated particles. The intermediate case where these two masses balance is 

treated in Section 5. This includes a numerical solution of the main problem of our 

study and discussion of the results obtained. The conclusions are summarized in 

Section 6.  Section 7 contains the Appendix with a numerical MATLAB code 

employed in Section 5. 
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PROBLEM FORMULATION 

         The physical phenomenon which we are about to study, is the interaction 

between the mobile charges dissociated from a solid surface immersed in an 

electrolyte solution, the ions of this solution and the fixed surface charge of the 

surface itself. 

       We consider the solution between two parallel negatively charged metal plates 

with surfaces area 𝑆0 separated by distance 𝐿. Let this solution consist of the solvent 

(e.g., water), positive univalent ions (cations z+=1) dissociated  from the wall, and 

of negative univalent ions (anions, z- ),  and univalent cations (𝑧+ = 1) of the salt 

added to the solution. Let the total number of gram-molecules of salt be 2𝑁 

(𝑁 = 𝑆0𝐿𝑛, whereas 𝑛 is the total number of gram-molecules of salt per unit 

volume), and let the surface charge density of the metal/solution interface be 

𝜎̃(𝐶/𝑚2 ).  The Poisson equation for the electric potential 𝜑̃ reads as follows 

𝜀𝑟𝜀0∆̃𝜑̃ = −𝜌̃ = −𝐹(𝐶̃+
′ +  𝐶̃+ −  𝐶̃−).                                  (2.1𝑎) 

Here 𝜀𝑟  is the relative permittivity,  𝜀0 = 8.85 × 10−12𝐶 × 𝑉−1 × 𝑚−1  is the 

permitittivity of the vacuum,  𝜌̃ is the density of the space charge, whereas 𝐶+
′̃ is the 

concentration of cations dissociated from the surface,  𝐶̃+ ( 𝐶̃−) is the concentration 

of cations (anions)of the salt, and 𝐹 is the Faraday’s constant (𝐹 = 𝑒𝑁𝐴 = 9.6 ×

104 𝐶 × 𝑚𝑜𝑙−1). We assume that the ions are in thermal equilibrium with the 

Boltzmann distribution 

𝐶̃± = 𝐶̃±
0 exp (

∓𝐹𝜑̃

𝑅𝑇
),                                                (2.1𝑏) 

𝐶̃+
′ = 𝐶̃+

0′
exp (

−𝐹𝜑̃

𝑅𝑇
),                                               (2.1𝑐) 
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where 𝐶̃±
0 and  𝐶̃+

0′
 are the a priori unknown concentrations of the ions of the added 

salt and those dissociated from the metal surface at the location of zero electric 

potential,   and  𝑅 is the universal gas constant(𝑅 = 8.31 𝑉 × 𝐶/𝑚𝑜𝑙 × 𝐾). In this 

case equation (2.1𝑎) is reduced to Poisson-Boltzmann equation 

𝜀𝑟𝜀0∆̃𝜑̃ = −𝐹 (𝐶̃+
0 exp (

−𝐹𝜑̃

𝑅𝑇
) + 𝐶̃+

0′
exp (

−𝐹𝜑̃

𝑅𝑇
) − 𝐶̃−

0 exp (
𝐹𝜑̃

𝑅𝑇
)).      (2.1𝑑) 

The concentrations 𝐶̃±
0 and 𝐶̃+

0′
 are related to the total mass of salt in per unit 

volume  𝑛 and surface charge 𝜎̃  through the following relations stemming from the 

ionic mass balance per unit area: 

𝐶̃±
0 =

𝑛𝐿

∫ exp (
∓𝐹𝜑̃

𝑅𝑇
) 𝑑𝑥̃

0

−𝐿

,                                               (2.2𝑎) 

𝐶̃+
0′

=
𝜎

∫ exp (
−𝐹𝜑̃

𝑅𝑇
) 𝑑𝑥̃

0

−𝐿

.                                              (2.2𝑏) 

Here  𝜎 = 𝜎̃/𝐹 is the total number of gram-molecules of cations dissociated from a 

unit area of the metal wall  

Since the two boundaries at  𝑥̃  = ±𝐿 are symmetric about 𝑥̃ =  0 (fig. 1), it is 

sufficient to solve the Poisson–Boltzmann equation only in the interval −𝐿 < 𝑥̃ < 0. 

The boundary conditions for 𝐸𝑞. (2.1𝑎) depend on the particular problem under 

consideration. It follows by symmetry that 

(
𝑑𝜑̃

𝑑𝑥̃
)|

𝑥̃=0
= 0,                                                   (2.3𝑎) 

And normalizing the potential at 𝑥̃ = −𝐿 , we set: 

𝜑̃(−𝐿) = 0.                                                      (2.3𝑏) 
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Overall electroneutrality of the system (integration of Eq.(2.1 𝑑) from 𝑥̃ = 0  to 

𝑥̃ = 𝐿, taking into account Eqns. (2.2),(2.3a)) yields  

𝜀𝑟𝜀0 (
𝑑𝜑̃

𝑑𝑥̃
)|

𝑥̃=−𝐿
= 𝜎̃                                                  (2.3𝑐) 

Let us define the following dimensionless variables:  

𝑥 =
𝑥̃

𝐿
                                                               (2.4𝑎) 

𝜑 =
𝐹𝜑̃

𝑅𝑇
                                                            (2.4𝑏) 

𝐶± =
𝐶̃±

0

𝐶0
                                                          (2.4𝑐) 

𝐶+
′ =

𝐶̃+
0′

𝐶0
                                                          (2.4𝑑) 

Here, 𝐶0 = 𝜎/𝐿. In terms of dimensionless variables (2.4), equations (2.1d), (2.3) 

are rewritten as 

𝜀2𝜑𝑥𝑥 =
𝑛𝐿

𝜎

1

∫ e𝜑 𝑑𝑥
0

−1

𝑒𝜑 −
𝑛𝐿

𝜎

1

∫ e−𝜑 𝑑𝑥
0

−1

𝑒−𝜑 −
1

∫ e−𝜑 𝑑𝑥
0

−1

𝑒−𝜑 ,                 (2.5𝑎) 

𝜑𝑥(0) = 0,                                                            (2.5𝑏) 

𝜑(0) = 0,                                                             (2.5𝑐) 

        The electric field is related to the surface charge density 𝜎 by the electrostatic 

boundary condition at 𝑥 =  −1 

𝜀2𝜑𝑥(−1) = 1,                                                      (2.6) 

where 

𝜀2 =
𝜀𝑟𝜀0𝑅𝑇

𝐹2𝐿𝜎
.                                                         (2.7) 
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       For  𝑇 = 3000𝐾 , and 𝐿 and σ in the realistic range of 10−6 < 𝐿 < 10−4 ( 𝑚) and 

10−3<σ<10−5, respectively, 𝜀 lies in the range 10−7 < 𝜀2 < 10−3. That is for most 

aqueous systems 𝜀   is a very small number.  

       The right-hand side of Eq. (2.5𝑎) contains the ‘phase’ integrals in terms of the 

unknown electric potential 𝜑(𝑥). Presence of these integrals in the right hand side 

of the Poisson-Boltzmann equation is the main particularity of our model compared 

with the common mean field models of EDL based on the Poisson Boltzmann 

equation. As a result, we are unable to obtain a closed-form analytic solution for the 

electric potential. Instead, each integral must be evaluated either through 

approximation or numerically. Let us define the ratio between the total mass of ions 

dissociated from the unite area of the wall  and  those of the added salt as   

𝑛𝐿

𝜎
≡ 𝑛0.                                                             (2.8) 

Here 𝑛0  is a dimensionless parameter which may conveniently characterize various 

scalings of the total amount of added ions  versus those that have dissociated from 

the wall. We are particularly interested in the following three cases:  

          CASE I: No added salt, 𝑛0 = 0 . In this case, whose study was pioneered by 

Gouy [1] ,  the Poisson-Boltzmann equation (2.5𝑎) is reduced to:  

𝜑𝑥𝑥 = −
1

𝜀2 ∫ 𝑒−𝜑𝑑𝑥
0

−1

𝑒−𝜑 

        CASE II: The total amount of cations dissociated from the wall is negligible 

compared to the total mass of the added salt (𝑛0 ≫ 1). 

       CASE III: The total amount of dissociated particles is comparable to the total 

mass of added salt (𝑛0 = 𝑂(1)). 
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In what follows we analyze these three cases beginning with the simplest one 

pertaining to the system with no added salt. 
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CASE I:  𝑵𝑶 𝑨𝑫𝑫𝑬𝑫 𝑺𝑨𝑳𝑻, 𝑰𝑵𝑭𝑰𝑵𝑰𝑻𝑬 𝑳𝑨𝒀𝑬𝑹, 𝒏𝟎 = 𝟎 

This simplest version of Eq. (2.5) pertains to an infinite layer bounded on the left at 

𝑥 = −1, by a charged surface with the only ions in solution being those dissociated 

from the wall. For and infinite layer, there is no natural ‘macroscopic’ length in the 

system, which implies that L in Eq. (27) is fixed arbitrarily, that is the parameter  ε  

is arbitrary too.  Let us introduce a new parameter 

𝐴̃ =
1

𝜀2 ∫ 𝑒−𝜑𝑑𝑥
∞

−1

,                                                      (3.1) 

With this notation, equation (2.5а) is rewritten as follows 

𝜑𝑥𝑥 = −𝐴̃𝑒−𝜑 

As we show below, for a semi-infinite layer, and a finite charge, 𝜎 > 0,  the potential 

drop over the entire solution layer is infinite. The full boundary value problem for 

this case is: 

𝜑𝑥𝑥 = −𝐴̃𝑒−𝜑                                                       (3.2𝑎) 

𝜑(−1) = 0                                                          (3.2𝑏) 

𝜑𝑥 → 0, 𝑥 → ∞                                                   (3.2𝑐) 

It follows from electroneutrality of the system (integration of Eq.(3.2a) from 

𝑥 = −1  to 𝑥 = ∞, taking into account Eqns. (3.1),(3.2c)) yields  

𝜀2𝜑𝑥(−1) = 1                                                        (3.2𝑑) 

The differential equation (3.2) can be solved through multiplying both sides by 

𝑑𝜑/𝑑𝑥  
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𝑑𝜑

𝑑𝑥
 (

𝑑

𝑑𝑥
 (

𝑑𝜑

𝑑𝑥
)) = (−𝐴̃𝑒−𝜑)

𝑑𝜑

𝑑𝑥
,  

1

2
 

𝑑

𝑑𝑥
 ((

𝑑𝜑

𝑑𝑥
)

2

) =
𝑑

𝑑𝑥
( 𝐴̃𝑒−𝜑).                                                      

After integration we will obtain constant, that can be found  from (3.2c)  

1

2
 (

𝑑𝜑

𝑑𝑥
)

2

= 𝐴̃𝑒−𝜑 + 𝑐𝑜𝑛𝑠𝑡, 

1

2
 (

𝑑𝜑

𝑑𝑥
)

2

=  𝐴̃𝑒−𝜑 , 

1

√2
 
𝑑𝜑

𝑑𝑥
= √𝐴̃𝑒−

𝜑

2 , 

𝑒
𝜑

2 = √
𝐴̃

2
𝑥 + 𝑐𝑜𝑛𝑠𝑡, 

Taking into account (3.2b) 

𝜑 = 2 ln (√
𝐴̃

2
(𝑥 + 1) + 1)                                            (3.3) 

Substitution of (2.5) into the (2.4), yields 

𝐴̃ ∫
1

(√𝐴̃

2
(𝑥 + 1) + 1)

2

∞

−1

𝑑𝑥 =
1

𝜀2
, 

𝐴̃ =
1

2𝜀4
, 

  The solution of the problem(2.2) reads:  

𝜑 = 2 ln (
1

2𝜀2
(𝑥 + 1) + 1)                                            (3.4𝑎) 
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Except for the 𝜀2 scaling and its related discussion below, Eq. (2.3a) is the classical 

Gouy solution, [1]. As for its discussion, it follows from (2.3𝑎) that 

𝜑𝑥 =
2

𝑥 + 1 + 2𝜀2
.                                                      (3.4𝑏) 

and, thus 

𝜑𝑥 ≈    
2

𝑥 + 1
, 𝑥 + 1 ≫ 𝜀2 .                                         (3.5) 

The charge density is given by expression 

𝜌 = −𝜀2𝜑𝑥𝑥 =
2𝜀2

(𝑥 + 1 + 2𝜀2)2
                                           (3.6𝑎) 

and, thus, 

𝜌 = 𝑂(𝜀−2), 𝑓𝑜𝑟     𝑥 + 1 = 𝑂(𝜀−2)                                 (3.6𝑏)  

𝜌 ≈
2𝜀2

(𝑥 + 1)2
, 𝑓𝑜𝑟     𝑥 + 1 ≫ 𝜀2.                                      (3.6𝑐) 

Integrating (3.6𝑎) we may define the charge of a layer of width, −1 < 𝑥 < 𝑥0, 

adjacent to the wall, 𝑥 = −1: 

𝑄 = ∫
2𝜀2𝑑𝑥

(𝑥 + 1 + 2𝜀2)2

𝑥0

−1

= 1 −
2𝜀2

𝑥0 + 1 + 2𝜀2
.                             (3.7)  

Equation (3.7) implies that most of dissociated charge is concentrated near the 

charged surface, 𝑥 = −1, in a thin layer with the thickness of the order of 𝜀2.  The 

amount of the charge distributed in the bulk  (𝜀2 ≪ 𝑥 < ∞) is negligible compared 

to this main part.  However, this residual charge is sufficient to destroy the common 

picture of the diffusion layer split into the EDL and the electro-neutral bulk valid in 

the presence of and added salt with finite non-vanishing concentration in that sense 

that the rate of decay of 𝜌 according to Eq. (3.6) is algebraic rather than exponential 

in the common EDL. 
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       Figure 2 shows the “condensed” layer of dissociated particles near the surface. 

The same result can be obtained from Taylor series expansion of equation (3.6𝑎) at 

𝑥 = −1. 

 

It follows from equation (3.7) that the total charge inside the layer with the 

thickness of  2𝜀2 (𝑥0 + 1 = 2𝜀2) is equal to 1/2. 

             To conclude this section we reiterate, that, due to the absence of an intrinsic  

or macroscopic length scale for an infinite layer without an added salt at a finite 

concentration, ε in this analysis is arbitrary, and so the scaling of the interface 

boundary layer. In spite of this arbitrariness, this analysis is valuable because an 

Figure   2: Density of dissociated charge near the surface. 
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inner interface sublayer of width O(ε2), dominated by the dissociated charge, with a 

structure identical to that described above, will be recovered in Section 5, 

addressing a finite layer with a total amount of added ions comparable with that of 

ions dissociated from the wall.   

 

 

 

 

 

 

Figure 3: Density of dissociated charge far from the surface 
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CASE II∶  𝑨𝑫𝑫𝑬𝑫 𝑺𝑨𝑳𝑻, 𝑭𝑰𝑵𝑰𝑻𝑬 𝑳𝑨𝒀𝑬𝑹, 𝒏𝟎 ≫ 𝟏 

 

In this case, 𝐶± ≫ 𝐶+
′ , that is,  therefore, the last term in equation (2.5𝑎), which 

corresponds the density of particles dissociated from the surface  becomes small 

and has to be handled asymptotically as a perturbation. For simplicity let us take the 

perturbation as 

1

𝑛0
= 𝜀2                                                                    (4.1) 

Thus, boundary value problem (2.5)   can be written as  

𝜀̃2𝜑𝑥𝑥 =
1

∫ 𝑒𝜑 𝑑𝑥
0

−1

𝑒𝜑 −
1

∫ 𝑒−𝜑 𝑑𝑥
0

−1

𝑒−𝜑 − 𝜀̃
1

∫ 𝑒−𝜑 𝑑𝑥
0

−1

𝑒−𝜑                      (4.2𝑎) 

𝜑𝑥(−1) =  
1

𝜀̃
,                                                        (4.2𝑏) 

𝜑𝑥(0) = 0,                                                            (4.2𝑐) 

𝜑(0) = 0.                                                            (4.2𝑑) 

Here 𝜀̃ is the new dimensionless Debye length rescaled by 𝑛0 

𝜀̃ =
𝜀

√𝑛0

                                                                 (4.3)  

For aqueous electrolytes systems with 𝜀̃2 ≪ 1,  the electrolyte layer splits into the 

electro-neutral bulk, where the electric potential remains constant and EDL where 

the electric potential changes rapidly. In this case we may approximate the integrals 

in Eq. (4.2a) in the following fashion. According to (1.5𝑑) the potential in electro-

neutral bulk  𝜑𝑏 ≈ 0. Thus each integral in (4.2𝑎) can be expressed as a sum of the 

following two contributions: 
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∫ e𝜑 𝑑𝑥

0

−1

= ∫ e𝜑 𝑑𝑥

−1+𝜀̃

−1

+ ∫ e𝜑𝑏 𝑑𝑥

0

−1+𝜀̃

≈ 1 + 𝜇1𝜀̃,                           (4.3𝑎) 

∫ e−𝜑 𝑑𝑥

0

−1

= ∫ e−𝜑 𝑑𝑥

−1+𝜀̃

−1

+ ∫ e−𝜑𝑏 𝑑𝑥

0

−1+𝜀̃

≈ 1 + 𝜇2𝜀̃,                    (4.3𝑏) 

Here, 𝜇1 and 𝜇2 are order unity constants (evaluated in the end of this section) in 

the range 0 < 𝜇1 < exp (−𝑉0),   0 < 𝜇2 < exp (𝑉0). Here,  𝑉0  is the unknown potential 

at the surface (𝑥 = −1). Substituting the results from (4.3) into (4.2) we obtain  

𝜀̃2𝜑𝑥𝑥 = 𝑒𝜑(1 − 𝜇1𝜀̃) − 𝑒−𝜑(1 − 𝜇2𝜀̃) − 𝜀̃𝑒−𝜑 (1 − 𝜇2𝜀̃)            (4.4𝑎) 

𝜑𝑥(−1) =  
1

𝜀̃
,                                                        (4.4𝑏) 

𝜑𝑥(0) = 0,                                                            (4.4𝑐) 

𝜑(0) = 0.                                                            (4.4𝑑) 

Outer Problem 

   By applying EDL approximation we obtain for the leading order solution in outer 

region 

𝑒𝜑0 − 𝑒−𝜑0 = 0 

thus 

𝜑0 = 0. 

Inner Problem 

In order to formulate the inner boundary value problem let us introduce the 

following inner variable 

𝑦 =
𝑥 + 1

𝜀̃
                                                               (4.5) 

Using (4.5) we approximate the solution to (4.4) by the solution to the inner 

equation 
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𝜑𝑦𝑦
𝑖𝑛 = 𝑒𝜑𝑖𝑛

− 𝑒−𝜑𝑖𝑛
                                                    (4.6𝑎) 

𝜑𝑦(0) =  1,                                                          (4.6𝑏) 

𝜑𝑦 → 0,     𝑦 → ∞                                                    (4.6𝑐) 

𝜑 → 0                                                                       (4.6𝑑) 

After multiplying both sides by 𝑑𝜑/𝑑𝑥 and integration we will obtain constant, that 

can be found  from (4.4 c,d) 

1

2
 (

𝑑𝜑𝑖𝑛

𝑑𝑥
)

2

= 𝑒𝜑𝑖𝑛
+ 𝑒−𝜑𝑖𝑛

− 2.                                          (4.7) 

The inner solution reads 

𝜑𝑖𝑛 =  2 ln (
𝑒−

𝑉0
2 + 1 + (𝑒−

𝑉0
2 − 1) 𝑒−√2𝑦

𝑒−
𝑉0
2 + 1 − (𝑒−

𝑉0
2 − 1) 𝑒−√2𝑦

).                           (4.8) 

Here 𝑉0  is the electric potential at 𝑦 = 0 , which can be found from (4.7) 

𝑉0 = 𝑙𝑛(2) = 0.6931. The leading order solution itself for the problem (4.4) reads: 

𝜑(𝑥) =  2 ln (
𝑒−

𝑉0
2 + 1 + (𝑒−

𝑉0
2 − 1) 𝑒−√2

𝑥+1

𝜀̃

𝑒−
𝑉0
2 + 1 − (𝑒−

𝑉0
2 − 1) 𝑒−√2

𝑥+1

𝜀̃

),                          (4.9) 

Accordingly for the charge density this solution yields   

𝜌 =  −𝜀̃2𝜑𝑥𝑥  =  −
4(𝑒−𝑉0 − 1)𝑒√2

𝑥+1

𝜀̃

(𝑒−
𝑉0
2 − 1 − (𝑒−

𝑉0
2 + 1) 𝑒√2

𝑥+1

𝜀̃ )
2

−  
4(𝑒−𝑉0 − 1)𝑒√2

𝑥+1

𝜀̃

(𝑒−
𝑉0
2 − 1 + (𝑒−

𝑉0
2 + 1) 𝑒√2

𝑥+1

𝜀̃ )
2                                                    (4.10) 

        In this case, the effect of the charges dissociated from the wall upon the overall 

potential distribution in the solution is negligible due to the complete dominance of 

the “salt” ions. Electrolyte layer is divided into two parts: the electro-neutral bulk 
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and thin EDL. According to equation (4.3) the thickness of the EDL, that is, 

dimensionless Debye length, is proportional to 𝑛0
−

1

2 and, thus, increases with the 

decrease of the total amount of added ions 𝑛0 , in precise agreement with the 

common picture of EDL known since the pioneering works of Gouy and Chapman 

[1], [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

To complete this section, we evaluate 𝜇1 and 𝜇2. By substituting the leading order 

solution of  (4.4) into (4.3), we obtain the equations for 𝜇1 and 𝜇2 in terms of 𝜀̃   

𝜇1 =

𝑥 + 1 −
2√2𝜀̃(𝑒

−
𝑉0
2 +1)

𝑒
−

𝑉0
2 +1+(𝑒

−
𝑉0
2 −1)𝑒

−√2
𝑥+1

𝜀̃

|

𝑥=−1

𝑥=0

− 1

𝜀̃
                       (4.11𝑎) 

Figure 4: Density of ions. 
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𝜇2 =

𝑥 + 1 −
2√2𝜀̃(𝑒

−
𝑉0
2 +1)

𝑒
−

𝑉0
2 +1−(𝑒

−
𝑉0
2 −1)𝑒

−√2
𝑥+1

𝜀̃

|

𝑥=−1

𝑥=0

− 1

𝜀̃
                       (4.11𝑏) 

 

Taking into account (4.11) we can calculate the actual values of  𝜇1 and 𝜇2. 

𝜇1 ≈ 0.58, 

𝜇2 ≈ −0.41, 

The calculations show that the values of 𝜇1 and 𝜇2 don’t depend from 𝜀̃. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Charge density profiles for different salt 
concentrations. 
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CASE III: 𝑫𝑰𝑺𝑺𝑶𝑪𝑰𝑨𝑻𝑬𝑫 𝑪𝑯𝑨𝑹𝑮𝑬 𝑨𝑵𝑫 𝑨𝑫𝑫𝑬𝑫 𝑺𝑨𝑳𝑻 𝑩𝑨𝑳𝑨𝑵𝑪𝑬,   

𝑭𝑰𝑵𝑰𝑻𝑬 𝑳𝑨𝒀𝑬𝑹, 𝒏 = 𝑶(𝝈) 

This is the most interesting case and essentially the main focus of our study. In this 

case the number of both types of ions, added and dissociated from the wall, is 

comparable and as a result the electric potential is effected by both types of charges. 

As we will show below, in this case, in addition to the microscopic ε-wide EDL and  

a macroscopic electro-neutral bulk present in accordance with the classical Gouy-

Chapman picture of EDL  a new very thin (ε2-wide) charged layer appears near the 

wall.     Let us assume for simplicity O(σ)=σ. In this case, the boundary value 

problem (4.1) assumes the form  

𝜀̃2𝜑𝑥𝑥 =
1

∫ 𝑒𝜑𝑑𝑥
0

−1

𝑒𝜑 −
2

∫ 𝑒−𝜑𝑑𝑥
0

−1

𝑒−𝜑,                          (5.1𝑎) 

𝜀̃2φ𝑥(−1) = 1,                                                         (5.1b) 

φ(−1) = 0,                                                         (5.1c) 

𝜑𝑥(0) = 0,                                                        (5.1𝑑) 

Numerical Solution. 

Numerical procedure 

In this section we present the results of the numerical study of the model problem 

(5.1𝑎 − 𝑐). In what follows we address the case of equal mass of the dissolved and 

dissociated charges: 𝑛0 = 1. This problem may be solved semi-analytically through 

solution of the equation (5.1a) in terms of elliptic Jacobi functions, with a 

subsequent numerical solution of the  resulting system of two transcendental 

equations, or through a direct numerical soultion by iteration scheme in which the 
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electric potential 𝜑 in the integrals is updated after each iteration step. We chose the 

latter approach. In our iterations we use the equation  

𝜀̃2𝜑′′
𝑖

= 𝐴𝑖−1𝑒𝜑𝑖 − 𝐵𝑖−1𝑒−𝜑𝑖 ,   𝑖 = 1,2.. 

Here  

𝐴𝑖−1 =
1

∫ 𝑒𝜑𝑖−1𝑑𝑥
0

−1

 

𝐵𝑖−1 =
2

∫ 𝑒𝜑𝑖−1𝑑𝑥
0

−1

 

For evaluation of the initial approximation for the integrals A0  and B0 we use the 

analytical solution (3.4a). 

The accuracy of the proposed numerical solution is verified through convergence of  

𝐴𝑖−1 and 𝐵𝑖−1 . Numerical solution to the problem (5.1) have been obtained for  

𝜀̃ = 0.1 , 0.05, 0.02 and 𝑛0 = 1. For implementation of this iteration procedure we 

used MATLAB  package bvp4c.  The results obtained are presented below. 

 

Results 

In 𝐹𝑖𝑔. 6  we depict the profiles of the electric potential 𝜑. It is observed that, in 

addition to the common 𝑂(𝜀̃) wide boundary layer, a novel  charged sublayer 

appears near the surface, with the thickness of the order of 𝑂(𝜀̃2). This layer is 

dominated by the charges dissociated from the wall. The thickness of this layer 

relative to the thickness of the entire boundary layer increases upon the decrease of 

the  𝜀̃ (𝐹𝑖𝑔. 7). The electric field in this layer algebraically vanishes as 𝑥/𝜀̃2 → ∞, 

similary to that of the classical Gouy solution for the no added electrolyte case in an 

infinite layer ([1], Case I,p.12 of this study).  
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Figure 7:  The profiles of the electric potential 𝝋: for 𝜺̃ = 𝟎. 𝟏, 𝜺̃ = 𝟎. 𝟎𝟓, 
𝜺̃ = 𝟎. 𝟎𝟐. Dashed line stands for the analytical approximation (𝝋𝟎 given by 
Eq 3.3). Solid line stands for numerical solution 𝝋  to the problem 
(𝟓. 𝟏𝒂 − 𝒄). 

 

Figure 6:  The profiles of the electric potential 𝝋: for 𝜺̃ = 𝟎. 𝟏(𝒂), 
𝜺̃ = 𝟎. 𝟎𝟓(𝒃), 𝜺̃ = 𝟎. 𝟎𝟐(𝒄). Dashed line stands for the analytical 
approximation (𝝋𝟎 given by Eq 3.3). Solid line stands for numerical 
solution 𝝋  to the problem (𝟓. 𝟏𝒂 − 𝒄). 
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           Next we address the asymptotic behavior of the solution to the problem 

(5.1 𝑎 − 𝑐) in the layer 𝑦 = 𝑂(𝜀̃). In 𝐹𝑖𝑔𝑠. 8 we present the plots of numerically 

computed potential 𝜑 and its analytical approximation 𝜑̃. 

         This portion of the boundary layer corresponds to the classical order 𝑂(𝜀̃) thick  

Gouy-Chapman EDL, discussed in CASE II (𝐹𝑖𝑔𝑠 8(𝑎, 𝑏, 𝑐)). This layer is dominated 

by the ions of the added salt.  According to Eq. (5.1 b), the absolute thickness of this 

sublayer increases upon the decrease of the added salt concentration.  

     To summarize, if the dissolved wall charge is comparable with the total mass of 

added salt ions, the structure of the electrolyte layer changes dramatically: near the 

wall there appears a new 𝑂(𝜀̃2) thick sublayer which is dominated by the wall  

Figure8:  The profiles of the electric potential 𝝋: for 𝜺̃ = 𝟎. 𝟏(𝒂), 𝜺̃ = 𝟎. 𝟎𝟓(𝒃), 
𝜺̃ = 𝟎. 𝟎𝟐(𝒄). Dashed line stands for the analytical approximation (𝝋̃ given by Eq 2.9). 
Solid line stands for numerical solution 𝝋  to the problem (𝟓. 𝟏𝒂 − 𝒄). 
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charge only. The electric field decreases and vanishes algebraically  towards the 

outer edge of this layer as it does in the classical Gouy solution of Section 3. In our 

analysis in this section, this sublayer is not masked by the excess salt ions, as it is in 

the asymptotic treatment of Section 5. This layer is followed (𝐹𝑖𝑔. 9) by a much 

wider, 𝑂(𝜀̃) thick,   classical Gouy-Chapman layer in which the electric field 

decreases exponentially. This layer is followed by O(1) - thick electro-neutral bulk 

with zero electric field. To the best of our knowledge, this fine structure emerging 

when the dissolved wall charge is comparable with the total mass of added salt ions 

has not been observed in the previous EDL studies and constitutes a novel 

information worthy of publication. 

 

 

Figure 9:  Structure of the electrolyte layer. I - fixed width layer dominated by wall 
charge;  II – 𝑶(𝜺̃) Gouy-Chapman layer ; III – wide E-N bulk. 
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CONCLUSION 

       We formulated a mean field model for the equilibrium distribution of the ionic 

concentrations and electric potential in a closed ionic system consisting of two 

charged metal walls flanking a univalent electrolyte solution layer of finite width. 

The model is formulated in terms of Poisson Boltzmann (PB) equation with integral 

terms in it accounting for the closeness of the system and specifying the total 

amount of ions in it. We discussed in detail the solution of PB equation in three 

regimes: in the absence of an added salt, in the case where 𝑡he amount of ions 

dissociated from wall, σ, is negligible compared to the amount of the ions of the 

added salt, nL , and in the case where 𝜎 and 𝑛𝐿 are of the same orders of magnitude. 

The solution for the first regime, by and large recovering the classical solution of 

Gouy in terms of the total mass of dissociated particles in per unit area, 𝜎, sets the 

ground for  interpretation of the numerical results for the main topic of our study: 

analysis of the intermediate regime when 𝜎 and 𝑛𝐿 are comparable.  

       The explicit solution of the PB equation obtained for this first regime allowed us 

to identify of the ultrathin sublayer of “condensed” charge near the interface 

appearing in the intermediate regime (CASE III). In this regime, the classical picture 

of the solution split into the 𝑂(𝜀̃) wide electric double layer  and the electroneutral 

bulk breaks down, with the main part of dissociated particles concentrated in a 

𝑂(𝜀̃2)  compact sub layer, density of residual charge decays algebraically towards 

the adjacent 𝑂(𝜀̃) wide classical EDL recovered by the analysis of the CASE II. For 

this case, addressing the situation when the total amount of the ions of the added 

salt is high compared to that of ions dissociated from the wall, the smallness of the 

relevant control parameter 𝜀̃ allowed us to efficiently approximate the values of the 
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phase integrals in the modified PB equation. This result reveals the relation of the 

results for the modified PB equation to those in the classical Gouy-Chapman theory 

through renormalization of the classical dimensionless Debye length into the one 

scaled by the mass of the added salt. The relative measure of the latter versus the 

mass of ions dissociated from the wall is provided by the parameter n0. To 

summarize, our numerical solution for the intermediate regime in CASE III discloses 

the existence near the interface of a novel ultrathin charged sublayer unobserved in 

previous studies of EDL. The typical width of this sublayer, largely dominated by the 

counterions dissociated from the interface is  𝑂(𝜀̃2) , where  

𝜀̃2 =
𝜀𝑟𝜀0𝑅𝑇

𝐹2𝐿𝜎
. 

is the squared dimensionless Debye length based on the dissociated ions. 

The relative thickness of this sublayer versus the entire EDL increases upon the 

decrease of the surface charge  𝜎.  

       It appears natural to ask the question whether this ultrathin sublayer is 

universally present at charged surface and is only obscured by the approximations 

of the straightforward asymptotic boundary layer analysis of the type presented in 

Section 4 of this study; or, alternatively, this layer is nothing more than a 

mathematical artifact of a detailed ionic mass balance in a closed system? Answer to 

this question could be provided by a detailed numerical investigation which could 

be a subject of our future study. 
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APPENDIX 

clear; 
A=1;B=1;n=1;sigma=1;  

  
    epsilon=0.1; 

     
    xm=linspace(0,1,1000); 
    options = bvpset('Reltol',10^(-2)); 
    solinit=bvpinit(xm,[0 0]); 
    sol=bvp4c(@test,@testbc,solinit,options,A,B,epsilon); 
error=1; 
it=1; 
while error>0.001 
 x=sol.x; 
fA=exp(sol.y(1,:)); 
fB=exp(-sol.y(1,:)); 
A=n/IntSimp2(x,fA); 
B=(n+sigma)/IntSimp2(x,fB); 
Bstore(:,it)=B; 
Astore(:,it)=A; 
if it>1 
    error1=abs(Bstore(it)-Bstore(it-1)); 
    error2=abs(Astore(it)-Astore(it-1)); 
    error=max(error1,error2); 
end 
sol=bvp4c(@test,@testbc,sol,options,A,B,epsilon); 

  
it=it+1; 
end 
sol1=sol; 
A1=A; 
B1=B; 
xo=linspace(0,1,100000); 
sxint1=deval(sol1,xo,1); 
    epsilon=0.01; 

  
error=1; 
it=1; 
while error>0.001 
 x=sol.x; 
fA=exp(sol.y(1,:)); 
fB=exp(-sol.y(1,:)); 
A=n/IntSimp2(x,fA); 
B=(n+sigma)/IntSimp2(x,fB); 
Bstore(:,it)=B; 
Astore(:,it)=A; 
if it>1 
    error1=abs(Bstore(it)-Bstore(it-1)); 
    error2=abs(Astore(it)-Astore(it-1)); 
    error=max(error1,error2); 
end 
sol=bvp4c(@test,@testbc,sol,options,A,B,epsilon); 

  
it=it+1; 
end 
sol2=sol; 
A2=A; 
B2=B; 
xo=linspace(0,1,100000); 

  
sxint2=deval(sol2,xo,1);  
epsilon=0.001; 
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error=1; 
it=1; 
while error>0.001 
 x=sol.x; 
fA=exp(sol.y(1,:)); 
fB=exp(-sol.y(1,:)); 
A=n/IntSimp2(x,fA); 
B=(n+sigma)/IntSimp2(x,fB); 
Bstore(:,it)=B; 
Astore(:,it)=A; 
if it>1 
    error1=abs(Bstore(it)-Bstore(it-1)); 
    error2=abs(Astore(it)-Astore(it-1)); 
    error=max(error1,error2); 
end 
sol=bvp4c(@test,@testbc,sol,options,A,B,epsilon); 

  
it=it+1; 
end 
xo=linspace(0,1,100000); 
sol3=sol; 
sxint3=deval(sol3,xo,1); 
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