Books

  • O.I. Vinogradova "Colloidal Systems: Colloid ‘Chemistry’ for Physicists". (Moscow University Publishing House, Moscow, 2024), ISBN: 978-5-19-011962-6. (Publisher's Website)


  • Selected Recent Publications

  • O.I. Vinogradova, E.F. Silkina, E.S. Asmolov Surface potentials of conductors in electrolyte solutions. The Journal of Chemical Physics, 2024. (DOI)

  • E.S. Asmolov, V.A. Vasileva, O.I. Vinogradova Electrophoretic velocity of ion-releasing colloidal particles. Physics of Fluids, 2024. (DOI)

  • O.I. Vinogradova, E.S. Asmolov Diffusiophoresis of ionic catalytic particles. Physics of Fluids, 2024. (DOI)

  • O.I. Vinogradova, E.F. Silkina Electrophoresis of ions and electrolyte conductivity: From bulk to nanochannels. The Journal of Chemical Physics, 2023. (DOI)

  • O.I. Vinogradova, E.F. Silkina, E.S. Asmolov Slippery and mobile hydrophobic electrokinetics: from single walls to nanochannels. Current Opinion in Colloid and Interface Science, 2023. (DOI)

  • E.S. Asmolov, O.I. Vinogradova Limiting propulsion of ionic microswimmers. Physics of Fluids, 2023, 35, 072007. (DOI)

  • O.I. Vinogradova, E.F. Silkina, E.S. Asmolov Transport of ions in hydrophobic nanotubes. Physics of Fluids, 2022, 34, 122003. (DOI)

  • T.V. Nizkaya, E.S. Asmolov, O.I. Vinogradova, Theoretical modeling of catalytic self-propulsion. Current Opinion in Colloid and Interface Science, 2022, 62, 101637. (DOI)

  • E.S. Asmolov, T.V. Nizkaya, O.I. Vinogradova, Accurate solutions to non-linear PDEs underlying a propulsion of catalytic microswimmers. Mathematics, 2022, 10, 1503. (DOI)

  • E.S. Asmolov, T.V. Nizkaya, O.I. Vinogradova, Self-diffusiophoresis of Janus particles that release ions. Phys. Fluids, 2022, V. 34, 032011 (DOI)

  • E.S. Asmolov, T.V. Nizkaya, J. Harting, O.I. Vinogradova, Instability of particle inertial migration in shear flow. Phys. Fluids, 2021, V.33, 092008 (DOI)

  • O.I. Vinogradova, E.F. Silkina, and E.S. Asmolov, Enhanced transport of ions by tuning surface properties of the nanochannel. Phys. Rev. E, 2021, V.104, 035107 (DOI)

  • E.F. Silkina, N. Bag, O.I. Vinogradova, Surface and zeta potentials of charged permeable nanocoatings. J. Chem. Phys., 2021, V.154, 164701 (DOI)

  • P. Arya, M. Umlandt, J. Jelken, D. Feldmann, N. Lomadze, E.S. Asmolov, O.I. Vinogradova, S. Santer Light-induced manipulation of passive and active microparticles. Eur. Phys. J. E, 2021, V.44, 50 (DOI)

  • E.F. Silkina, N. Bag, O.I. Vinogradova Electro-osmotic properties of porous permeable films. Phys. Rev. Fluids, 2020, V.5, 123701 (DOI)

  • T.V. Nizkaya, A.S. Gekova, J. Harting, E.S. Asmolov, O.I. Vinogradova Inertial migration of oblate spheroids in a plane channel. Phys. Fluids, 2020, V.32, 112017 (DOI)

  • O.I. Vinogradova, E.F. Silkina, N. Bag, E.S. Asmolov, Achieving large zeta-potentials with charged porous surfaces. Phys. Fluids, 2020, V.32, 102105 (DOI)

  • E.S. Asmolov, T.V. Nizkaya and O.I. Vinogradova, Flow-driven collapse of lubricant-infused surfaces. J. Fluid Mech., 2020, V.910, A34 (DOI)

  • D.Feldmann, P.Arya, T.Y.Molotilin, N.Lomadze, A.Kopyshev, O.I.Vinogradova and S.A.Santer, Extremely long-range light-driven repulsion of porous microparticles. Langmuir, 2020, V.36, 6994–7004 (DOI)

  • T.V.Nizkaya, E.S.Asmolov, J.Harting, and O.I.Vinogradova, Inertial migration of neutrally buoyant particles in superhydrophobic channels. Phys. Rev. Fluids, 2020, V.5, 014201 (DOI)

  • E.F. Silkina, T.Y. Molotilin, S.R.Maduar and O.I. Vinogradova, Ionic equilibria and swelling of soft permeable particles in electrolyte solutions. Soft Matter, 2020, V.16, 929-938 (DOI)

  • E.F. Silkina, E.S. Asmolov and O.I. Vinogradova, Electro-osmotic flow in hydrophobic nanochannels. Phys. Chem. Chem. Phys., 2019, V.21, pp.23036-23043 (DOI)

  • E.S. Asmolov, T.V. Nizkaya, and O.I. Vinogradova, Enhanced slip properties of lubricant-infused grooves. Phys. Rev. E, 2018 V.98, 033103 (DOI)

  • T.Y. Molotilin, S.R. Maduar, and O.I. Vinogradova, Star polymers as unit cells for coarse-graining cross-linked networks. Phys. Rev. E, 2018 V.97, 032504 (DOI)

  • E.S. Asmolov, A.L. Dubov, T.V. Nizkaya, J. Harting, and O.I. Vinogradova, Inertial focusing of finite-size particles in microchannels. J. Fluid Mech., 2018, V.840, 613-630 (PDF)

  • A.L. Dubov, T.V. Nizkaya, E.S. Asmolov, and O.I. Vinogradova, Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids, 2018, V.3, 014002 (PDF)

  • A.L. Dubov, T.Y. Molotilin, and O.I. Vinogradova, Continuous electroosmotic sorting of particles in grooved microchannels. Soft Matter, 2017, 13, 7498-7504 (DOI)

  • T.V. Nizkaya, E.S. Asmolov, and O.I. Vinogradova, Advective superdiffusion in superhydrophobic microchannels. Phys. Rev. E, 2017, V.96, 033109 (PDF)

  • T.Y. Molotilin, V. Lobaskin, and O.I. Vinogradova, Electrophoresis of Janus particles: A molecular dynamics simulation study. J. Chem. Phys., 2016, V.145, 244704 (PDF)

  • D. Feldmann, S.R. Maduar, M. Santer, N. Lomadze, O.I. Vinogradova, and S. Santer, Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. Sci. Rep., 2016, V.6, 36443 (DOI)

  • S.R. Maduar and O.I. Vinogradova, Electrostatic interactions and electro-osmotic properties of semipermeable surfaces. J. Chem. Phys., 2016, V.145, 164703 (PDF)

  • T.V. Nizkaya, A.L. Dubov, A. Mourran, and O.I. Vinogradova, Probing effective slippage on superhydrophobic stripes by atomic force microscopy. Soft Matter, 2016, V.12, pp.6910-6917 (DOI)

  • E.S. Asmolov, A.L. Dubov, T.V. Nizkaya, A.J.C. Kuehne, and O.I. Vinogradova, Principles of transverse flow fractionation of microparticles in superhydrophobic channels. Lab Chip, 2015, V.15, pp.2835-2841 (DOI)

  • A.L. Dubov, A. Mourran, M. Moller, and O.I. Vinogradova, Regimes of wetting transitions on superhydrophobic textures conditioned by energy of receding contact lines. Appl. Phys. Lett., 2015, V.106, 241601 (PDF)

  • T.V. Nizkaya, E.S. Asmolov, J. Zhou, F. Schmid, and O.I. Vinogradova, Flows and mixing in channels with misaligned superhydrophobic walls. Phys. Rev. E, 2015, V.91, 033020 (PDF)

  • S.R. Maduar, A.V. Belyaev, V.Lobaskin and O.I. Vinogradova, Electrohydrodynamics Near Hydrophobic Surfaces. Phys. Rev. Lett., 2015, V.114, 118301 (PDF)

  • T.V. Nizkaya, E.S. Asmolov, and O.I. Vinogradova, Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E, 2014, V.90, 043017 (PDF)

  • A.L.Dubov, A.Mourran, M.Möller and O.I.Vinogradova, Contact angle hysteresis on superhydrophobic stripes. J. Chem. Phys., 2014, V.141, 074710 (PDF)

  • S.R.Maduar and O.I.Vinogradova, Disjoining pressure of an electrolyte film confined between semipermeable membranes. J. Chem. Phys., 2014, V.141, 074902 (PDF)

  • A.L.Dubov, S.Schmieschek, E.S.Asmolov, J.Harting and O.I.Vinogradova, Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane. J. Chem. Phys., 2014, V.140, 034707 (PDF)

  • S.R.Maduar, V.Lobaskin and O.I.Vinogradova, Electrostatic interaction of heterogeneously charged surfaces with semipermeable membranes. Faraday Discuss., 2013, V.166, p.317-329 (PDF)

  • T.V.Nizkaya, E.S.Asmolov and O.I.Vinogradova, Flow in channels with superhydrophobic trapezoidal textures. Soft Matter, 2013, V.9, p.11671-11679 (PDF)

  • J.Zhou, E.S.Asmolov, F.Schmid and O.I.Vinogradova, Effective slippage on superhydrophobic trapezoidal grooves. J. Chem. Phys., 2013, V.139, 174708 (PDF)

  • E.S.Asmolov, J.Zhou, F.Schmid and O.I.Vinogradova, Effective slip-length tensor for a flow over weakly slipping stripes. Phys. Rev. E, 2013, V.88, 023004 (PDF)

  • E.S.Asmolov, S.Schmieschek, J.Harting and O.I.Vinogradova, Flow past superhydrophobic surfaces with cosine variation in local slip length. Phys. Rev. E, 2013, V.87, 023005 (PDF)

  • A.Mongruel, T.Chastel, E.S.Asmolov and O.I.Vinogradova, Effective hydrodynamic boundary conditions for microtextured surfaces. Phys. Rev. E, 2013, V.87, 011002(R) (PDF)

  • O.I.Vinogradova and A.L.Dubov, Superhydrophobic textures for microfluidics. Mendeleev Commun., 2012, V.22, p.229–236 (PDF)

  • E.S.Asmolov and O.I.Vinogradova, Effective slip boundary conditions for arbitrary one­ dimensional surfaces. J. Fluid Mech., 2012, V.706, p.108-­117 (PDF)

  • V.Lobaskin, A.N.Bogdanov and O.I.Vinogradova, Interactions of neutral semipermeable shells in asymmetric electrolyte solutions. Soft Matter, 2012, V.8, 9428 (PDF)

  • J.Zhou, A.V.Belyaev, F.Schmid, and O.I.Vinogradova, Anisotropic flow in striped superhydrophobic channels. J. Chem. Phys., 2012, V.136, 194706 (PDF)

  • S.Schmieschek, A.V.Belyaev, J.Harting and O.I.Vinogradova, Tensorial slip of superhydrophobic channels. Phys. Rev. E, 2012, V.85, 016324 (PDF)

  • O.I.Vinogradova, L.Bocquet, A.N.Bogdanov, R.Tsekov and V.Lobaskin, Electrostatic interaction of neutral semi-permeable membranes. J. Chem. Phys., 2012, V.136, 034902 (PDF)

  • A.V.Belyaev and O.I.Vinogradova, Electro-osmosis on anisotropic super-hydrophobic surfaces. Phys. Rev. Lett., 2011, V.107, 098301 (PDF)

  • E.S.Asmolov, A.V.Belyaev and O.I.Vinogradova, Drag force on a sphere moving towards an anisotropic super-hydrophobic plane, Phys. Rev. E, 2011, V.84, 026330 (PDF)

  • O.I.Vinogradova and A.V.Belyaev, Wetting, roughness and flow boundary conditions, J. Phys.: Condens. Matter, 2011, V.23, 184104 (PDF)

  • C.Kunert, J.Harting, and O.I.Vinogradova, Random-Roughness Boundary Conditions, Phys. Rev. Lett., 2010, V.105, 016001 (PDF)

  • A.V.Belyaev and O.I.Vinogradova, Effective slip in pressure-driven flow past superhydrophobic stripes, J. Fluid Mech., 2010, V.652, p.489-499 (PDF)

  • F.Feuillebois, M.Z.Bazant and O.I.Vinogradova, Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett., 2009, V.102, 026001 (PDF)

  • O.I.Vinogradova, K.Koynov, A.Best, and F.Feuillebois, Direct Measurements of Hydrophobic Slippage using Double-Focus Fluorescence Cross-Correlation, Phys. Rev. Lett., 2009, V.102, 118302 (PDF)

  • R.Tsekov, M.R.Stukan, and O.I.Vinogradova, Osmotic Equilibria for a Semi-Permeable Shell Immersed in a Solution of Polyions, J. Chem. Phys., 2008, V.129, 244707 (PDF)

  • M.Z.Bazant and O.I.Vinogradova, Tensorial Hydrodynamic Slip, J. Fluid Mech., 2008, V.613, 125-134 (PDF)

  • V.S.Ajaev, R.Tsekov and O.I.Vinogradova, The Wimple: a Rippled Deformation of a Wetting Film during its Drainage, Phys. Fluids, 2007, V.19, 061702 (PDF)

  • O.I.Vinogradova and G.E.Yakubov, Surface Roughness and Hydrodynamic Boundary Conditions, Phys. Rev. E, 2006, V.73, 045302(R) (PDF)

  • L.Y.Clasohm, J.N.Connor, O.I.Vinogradova, and R.G.Horn, The ``Wimple'': Rippled Deformation of a Fluid Drop Caused by Hydrodynamic and Surface Forces during Thin Film Drainage, Langmuir, 2005, V.21, N.18, p.8243 - 8249 (PDF)

  • V.V.Lulevich, D.Andrienko, and O.I.Vinogradova, Elasticity of Polyelectrolyte Multilayer Microcapsules, J. Chem. Phys., 2004, V.120, p.3822-3826 (PDF)

  • D.Andrienko, P.Patricio and O.I.Vinogradova. Capillary Bridging and Long-Range Attractive Forces in a Mean-Field Approach , J. Chem. Phys., 2004, V.121, p.4414-4423 (PDF)

  • O.I.Vinogradova, and G.E.Yakubov, Dynamic Effects on Force Measurements. 2. Lubrication and the Atomic Force Microscope, Langmuir, 2003, V.19, N.4, p.1227-1234 (PDF)

  • O.I.Vinogradova, and F.Feuillebois. Interaction of Elastic Bodies via Surface Forces. 2. Exponential Decay, J. Colloid Interface Sci., 2003, V.268, p.464-475 (PDF)